
SolrRelevancyFAQ
Solr Relevancy FAQ
Relevancy is the quality of results returned from a query, encompassing both what documents are found, and their relative ranking (the order that they are
returned to the user.)

Solr Relevancy FAQ
Should I use the standard or dismax Query Parser
How can I search for "superman" in both the title and subject fields
How can I make "superman" in the title field score higher than in the subject field
Why are search results returned in the order they are?
How can I see the relevancy scores for search results
Why doesn't my query of "flash" match a field containing "Flash" (with a capital "F")
How can I make exact-case matches score higher
I'm getting query parse exceptions when making queries
How can I make queries of "spiderman" and "spider man" match "Spider-Man"
How can I search for one term near another term (say, "batman" and "movie")
How can I increase the score for specific documents

Query Elevation Component
index-time boosts
Field Based Boosting

How can I change the score of a document based on the *value* of a field (say, "popularity")
How are documents scored
Why does id:archangel come before id:hawkgirl when querying for "wings"
Why doesn't document id:juggernaut appear in the top 10 results for my query
How can I boost the score of newer documents
How do I give a negative (or very low) boost to documents that match a query?
TODO

Should I use the standard or dismax Query Parser

The Query Parser uses to specify the query via the parameter, and it must be well formed or an error will be returned. It's standard SolrQuerySyntax q
good for specifying exact, arbitrarily complex queries.

The Query Parser has a more forgiving query parser for the parameter, useful for directly passing in a user-supplied query string. The other DisMax q
parameters make it easy to search across multiple fields using disjunctions and sloppy phrase queries to return highly relevant results.

For servicing user-entered queries, start by using dismax.

] From Solr 3.1 we recommend starting with the new [enabled by Extended Dismax parser ExtendedDisMax defType=edismax

How can I search for "superman" in both the title and subject fields

The standard request handler uses for :SolrQuerySyntax q

q=title:superman subject:superman

Using the , specify the query fields using the param.dismax request handler qf

q=superman&qf=title subject

How can I make "superman" in the title field score higher than in the subject field

For the standard request handler, "boost" the clause on the title field:

q=title:superman^2 subject:superman

Using the dismax request handler, one can specify boosts on fields in parameters such as :qf

q=superman&qf=title^2 subject

Why are search results returned in the order they are?

If no other sort order is specified, the default is by relevancy score.

How can I see the relevancy scores for search results

#
#
https://cwiki.apache.org/confluence/display/SOLR/DisMax
https://cwiki.apache.org/confluence/display/SOLR/Solr3.1
https://cwiki.apache.org/confluence/display/SOLR/ExtendedDisMax
#
https://cwiki.apache.org/confluence/display/SOLR/DisMaxRequestHandler

Request that the pseudo-field named "score" be returned by adding it to the (field list) parameter. The "score" will then appear along with the stored fl
fields in returned documents. q=Justice League&fl=*,score

Why doesn't my query of "flash" match a field containing "Flash" (with a capital "F")

The fieldType for the field containing "Flash" must have an analyzer that lowercases terms. This will cause all searches on that field to be case insensitive.

See for more.AnalyzersTokenizersTokenFilters

How can I make exact-case matches score higher

Example: a query of "Penguin" should score documents containing "Penguin" higher than docs containing "penguin".

The general strategy is to index the content twice, using different fields with different fieldTypes (and different analyzers associated with those fieldTypes).
One analyzer will contain a lowercase filter for case-insensitive matches, and one will preserve case for exact-case matches.

Use commands in the schema to index a single input field multiple times.copyField

Once the content is indexed into multiple fields that are analyzed differently, .query across both fields

I'm getting query parse exceptions when making queries

For the standard request handler, the parameter must be correctly formatted , with any special characters escaped. If this is a user-q SolrQuerySyntax
entered query, .consider using the dismax handler

Many other parameters such as and must also conform to regardless of which handler is used.fq facet.query SolrQuerySyntax

How can I make queries of "spiderman" and "spider man" match "Spider-Man"

WordDelimiterFilter can be used in the analyzer for the field being queried to match words with intra-word delimiters such as dashes or case changes.

How can I search for one term near another term (say, "batman" and "movie")

A proximity search can be done with a sloppy phrase query. The closer together the two terms appear in the document, the higher the score will be. A
sloppy phrase query specifies a maximum "slop", or the number of positions tokens need to be moved to get a match.

This example for the standard request handler will find all documents where "batman" occurs within 100 words of "movie":

q=text:"batman movie"~100

The dismax handler can easily create sloppy phrase queries with the (phrase fields) and (phrase slop) parameters:pf ps

q=batman movie&pf=text&ps=100

The dismax handler also allows users to explicitly specify a phrase query with double quotes, and the (query slop) parameter can be used to add slop to qs
any explicit phrase queries:

q="batman movie"&qs=100

How can I increase the score for specific documents

Query Elevation Component

To raise certain documents to the top of the result list based on a certain query, one can use the .QueryElevationComponent

index-time boosts

To increase the scores for certain documents that match a query, regardless of what that query may be, one can use index-time boosts.

Index-time boosts can be specified per-field also, so only queries matching on that specific field will get the extra boost. An Index-time boost on a value of
a multiValued field applies to all values for that field.

Under the covers, solr uses this numeric boost value as a factor that contributes to the "norm" for the field (along with teh length of the field in terms) so it
is only valid if 'omitNorms="false"' for the fields you use it on. It will also be encoded according to the rules of the Similarity class used, which means it may
loose precision. (ie: in the , the numeric norm value is encoded as a single byte using a 3-bit mantissa, so differences in boost values of DefaultSimilarity
less than 25% may end up being rounded out)

Index-time boosts may also be assigned with the optional attribute "boost" in the <doc> section of the XML updating messages - in which case it is
equivilent to specifying the boost param on all of the individual fiels. See for more information.UpdateXmlMessages

https://cwiki.apache.org/confluence/display/SOLR/AnalyzersTokenizersTokenFilters
https://cwiki.apache.org/confluence/display/SOLR/SchemaXml#SchemaXml-copyField
#
#
https://cwiki.apache.org/confluence/display/SOLR/AnalyzersTokenizersTokenFilters#AnalyzersTokenizersTokenFilters-WordDelimiterFilter
https://cwiki.apache.org/confluence/display/SOLR/QueryElevationComponent
#
https://cwiki.apache.org/confluence/display/SOLR/UpdateXmlMessages

Using Field and/or Document boosts has been supported since the very early days of Lucene, but is some what limiting and antiquated at this point, and
instead people should strongly consider indexing their boost values as numeric fields instead (see next section)

Field Based Boosting

You can structure your queries to include "boosts" based on specific attributes of documents. This might be a simple matter of adding an optional query
clause that "boosts" documents for matching an "important:true" query, or by using a function on the value of a numeric field (see the next section)

How can I change the score of a document based on the *value* of a field (say, "popularity")

Use a as part of your query.FunctionQuery

Solr can parse function queries in the following .syntax

Some examples...

 # simple boosts by popularity
 defType=lucene&df=text&q=%2Bsupervillians+_val_:"popularity"
 defType=dismax&qf=text&q=supervillians&bf=popularity
 q={!boost b=popularity}text:supervillians

 # boosts based on complex functions of the popularity field
 defType=lucene&q=%2Bsupervillians+_val_:"sqrt(popularity)"
 defType=dismax&qf=text&q=supervillians&bf=sqrt(popularity)
 q={!boost b=sqrt(popularity)}text:supervillians

These functions can also operate on an ExternalFileField

How are documents scored

By default, a "TF-IDF" based Scoring Model is used. The basic scoring factors:

tf stands for term frequency - the more times a search term appears in a document, the higher the score
idf stands for inverse document frequency - matches on rarer terms count more than matches on common terms
coord is the coordination factor - if there are multiple terms in a query, the more terms that match, the higher the score
lengthNorm - matches on a smaller field score higher than matches on a larger field
index-time boost - if a boost was specified for a document at index time, scores for searches that match that document will be boosted.
query clause boost - a user may explicitly boost the contribution of one part of a query over another.

See the for more info.Lucene scoring documentation

Why does id:archangel come before id:hawkgirl when querying for "wings"

Add to your request, and you will get (fairly dense) detailed scoring information for each document returned.debugQuery=on

q=wings&indent=on&debugQuery=on

This extra information will appear in the "explain" section of the "debug" section in the response.

#
http://lucene.apache.org/solr/api/org/apache/solr/search/QueryParsing.html#parseFunction(java.lang.String,%20org.apache.solr.schema.IndexSchema)
http://lucene.apache.org/solr/api/org/apache/solr/schema/ExternalFileField.html
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

<response>
<result>[...]</result>
<lst name="debug">
 <str name="rawquerystring">wings</str>
 <str name="querystring">wings</str>
 <str name="parsedquery">text:wings</str>
 <str name="parsedquery_toString">text:wings</str>
 <lst name="explain">
 <str name="id=archangel,internal_docid=4">
0.46632254 = (MATCH) fieldWeight(text:wings in 4), product of:
 1.7320508 = tf(termFreq(text:wings)=3)
 2.871802 = idf(docFreq=2)
 0.09375 = fieldNorm(field=text, doc=4)
</str>
 <str name="id=hawkgirl,internal_docid=24">
0.35897526 = (MATCH) fieldWeight(text:wings in 24), product of:
 1.0 = tf(termFreq(text:wings)=1)
 2.871802 = idf(docFreq=2)
 0.125 = fieldNorm(field=text, doc=24)
</str>
[...]

In this specific example, we see that the main scoring difference between the two documents is the or (term frequency) factor. The text field for the tf id:
 document contains the term 3 times () while the document only contains it once.archangel wings termFreq(text:wings)=3 id:hawkgirl

Debug info is expensive to generate, and should only be used for debugging problems with specific queries.

Debug info can also be selected from the admin query page, http://localhost:8983/solr/admin/form.jsp

Why doesn't document id:juggernaut appear in the top 10 results for my query

Since only gives you scoring "explain" info for the documents returned, the parameter can be used to specify other debugQuery=on explainOther
documents you want detailed scoring info for.

q=supervillians&debugQuery=on&explainOther=id:juggernaut

Now you should be able to examine the scoring explain info of the top matching documents, compare it to the explain info for documents matching id:
juggernaut, and determine why the rankings are not as you expect.

How can I boost the score of newer documents

Do an explicit sort by date (relevancy scores are ignored)
Use an index-time boost that is larger for newer documents
Use a to influence the score based on a date field.FunctionQuery

In Solr 1.3, use something of the form recip(rord(myfield),1,1000,1000)
In Solr 1.4, use something of the form recip(ms(NOW,mydatefield),3.16e-11,1,1)

 http://lucene.apache.org/core/api/queries/org/apache/lucene/queries/function/valuesource/ReciprocalFloatFunction.html http://lucene.
 apache.org/solr/api/org/apache/solr/search/BoostQParserPlugin.html

A full example of a query for "ipod" with the score boosted higher the newer the product is:

http://localhost:8983/solr/select?q={!boost b=recip(ms(NOW,manufacturedate_dt),3.16e-11,1,1)}ipod

One can simplify the implementation by decomposing the query into multiple arguments:

http://localhost:8983/solr/select?q={!boost b=$dateboost v=$qq}&dateboost=recip(ms(NOW,manufacturedate_dt),3.16
e-11,1,1)&qq=ipod

Now the main "q" argument as well as the "dateboost" argument may be specified as defaults in a search handler in solrconfig.xml, and clients would only
need to pass "qq", the user query.

To boost another query parser such as a dismax query, the value of the boost query is a full sub-query and hence can use the {!queryParser} syntax.
Alternately, the defType param can be used in the boost local params to set the default type to dismax. The other dismax parameters may be set as top
level parameters.

http://localhost:8983/solr/admin/form.jsp
#
http://lucene.apache.org/core/api/queries/org/apache/lucene/queries/function/valuesource/ReciprocalFloatFunction.html
http://lucene.apache.org/solr/api/org/apache/solr/search/BoostQParserPlugin.html
http://lucene.apache.org/solr/api/org/apache/solr/search/BoostQParserPlugin.html

http://localhost:8983/solr/select?q={!boost b=$dateboost v=$qq defType=dismax}&dateboost=recip(ms(NOW,
manufacturedate_dt),3.16e-11,1,1)&qf=text&pf=text&qq=ipod

Consider using reduced precision to prevent excessive memory consumption. You would instead use . recip(ms(NOW/HOUR,mydatefield),3.16e-11,1,1)
See for more information.this thread

How do I give a negative (or very low) boost to documents that match a query?

True negative boosts are not supported, but you can use a very "low" numeric boost value on query clauses. In general the problem that confuses people
is that a "low" boost is still a boost, it can only improve the score of documents that match. For example, if you want to find all docs matching "foo" or "bar"
but penalize the scores of documents matching "xxx" you might be tempted to try...

 q = foo^100 bar^100 xxx^0.00001 # NOT WHAT YOU WANT

...but this will still help a document matching all three clauses score higher then a document matching only the first two. One way to fake a "negative boost"
is to give a large boost to everything that does *not* match. For example...

 q = foo^100 bar^100 (*:* -xxx)^999

NOTE: When using (e)dismax, people sometimes expect that specifying a pure negative query with a large boost in the "bq" param will work (since Solr
automatically makes top level purely negative positive queries by adding an implicit "*:*" – but this doesn't work with "bq", because of how queries specified
via "bq" are added directly to the main query. You need to be explicit...

 ? defType = dismax
 & q = foo bar
 & bq = (*:* -xxx)^999

TODO

 :TODO:

shorter fields score higher
filter vs query clause
when should index-time boosts be used
searching one aggregate field vs many
using relevancy as a secondary sort
admin page for analyzer debugging

http://search-lucene.com/m/nkgRTTSRos1/FunctionQueries+and+FieldCache+and+OOM&subj=FunctionQueries+and+FieldCache+and+OOM

	SolrRelevancyFAQ

