HadoopStreaming

Hadoop Streaming is a utility which allows users to create and run jobs with any executables (e.g. shell utilities) as the mapper and/or the reducer.

Usage: $HADOOP_HOME/ bi n/ hadoop j ar $HADOOP_HOVE/ mapr ed/ contri b/ stream ng/ hadoop-stream ng.jar [options]

Opti ons:
-i nput <pat h> DFS input file(s) for the Map step
- out put <pat h> DFS output directory for the Reduce step
- mapper <cnd| JavaC assNane> The streami ng command to run
- conbi ner <Javad assNanme> Conbi ner has to be a Java cl ass
-reducer <cnd|Javad assNanme> The stream ng command to run
-file <file> File/dir to be shipped in the Job jar file
-dfs <h: p>| | ocal Optional. Override DFS configuration
-jt <h: p>| | ocal Optional. Override JobTracker configuration
-addi tional confspec specfile Optional .

-inputformat Text| nput For mat (def aul t) | SequenceFi | eAsText | nput For mat | JavaCl assNane Optional .
-out put for mat Text Qut put For mat (def aul t)| Javad assName Optional .

-partitioner JavaCd assNanme Optional .
-numReduceTasks <nun® Optional .
-inputreader <spec> Optional .
-jobconf <n>=<v> Optional. Add or override a JobConf property
- cndenv <n>=<v> Optional. Pass env.var to stream ng conmmands

-cacheFile fil eNaneURI
-cacheArchive fil eNameURI
-verbose

In -input: globbing on <path> is supported and can have nultiple -input

Default Map input format: a line is a record in UTF-8. Every line nust end
with an "end of line' delimter. The key part ends at first TAB, the rest
of the line is the value

Custom Map input format: -inputreader package. M/RecordReader, n=v, n=v
comre- separ at ed nane-val ues can be specified to configure the I|nputFornat
Ex: -inputreader 'StreanXnl Recor dReader, begi n=<doc>, end=</ doc>'

Map out put format, reduce input/output fornat:
Format defined by what mapper conmand outputs. Line-oriented

Use -cluster <name> to switch between "local" Hadoop and one or nore renote
Hadoop clusters.
The default is to use the normal hadoop-default.xm and hadoop-site.xn
El se configuration will use $HADOOP_HOMWE/ conf/ hadoop- <name>. xn

To set the number of reduce tasks (num of output files):
-j obconf mapred. reduce. tasks=10

To change the local tenp directory:
-jobconf dfs.data.dir=/tnp

Addi tional local tenp directories with -cluster |ocal:
-j obconf mapred.|ocal.dir=/tnp/local
-j obconf mapred.systemdir=/tnp/system
-j obconf mapred.tenp.dir=/tnp/tenp

For nore details about jobconf paraneters see:
http://wi ki.apache. org/ hadoop/ JobConfFil e

To set an environenent variable in a stream ng comrand:

-cndenv EXAMPLE_DI R=/ hone/ exanpl e/ di cti onari es/

Shortcut to run fromany directory:
set env. HSTREAM NG " $HADOOP_HOVE/ bi n/ hadoop jar $HADOOP_HOVE/ mapr ed/ cont ri b/ st r eam ng/ hadoop- stream ng.jar"

Exanpl e: $HSTREAM NG - mapper “/usr/local/bin/perl5 filter.pl"
-file /local/filter.pl -input "/1ogs/0604*/*" [...]
Ships a script, invokes the non-shipped perl interpreter
Shi pped files go to the working directory so filter.pl is found by perl
Input files are all the daily logs for days in nonth 2006- 04

Practical Help

Using the streaming system you can develop working hadoop jobs with extremely limited knowldge of Java. At it's simplest your development task is to
write two shell scripts that work well together, let's call them shellMapper.sh and shellReducer.sh. On a machine that doesn't even have hadoop installed
you can get first drafts of these working by writing them to work in this way:

cat sonelnputFile | shell Mapper.sh | shell Reducer.sh > soneQutputFile

With streaming, Hadoop basically becomes a system for making pipes from shell-scripting work (with some fudging) on a cluster. There's a strong logical
correspondence between the unix shell scripting environment and hadoop streaming jobs. The above example with Hadoop has somewhat less elegant
syntax, but this is what it looks like:

stream -input /dfslnputDir/sonelnputData -file shell Mapper.sh -mapper "shel |l Mapper.sh" -file shell Reducer.sh -
reducer "shel |l Reducer.sh" -output /dfsQutputDir/nyResults

The real place the logical correspondence breaks down is that in a one machine scripting environment shellMapper.sh and shellReducer.sh will each run
as a single process and data will flow directly from one process to the other. With Hadoop the shellMapper.sh file will be sent to every machine on the
cluster that has data chunks and each such machine will run it's own chunk through the shellMapper.sh process on each machine. The output from those
scripts doesn't run a reduce on each of those machines. Instead the output is sorted so that different lines from various mapping jobs are streamed across
the network to different machines (Hadoop defaults to four machines) where the reduce(s) can be performed.

Here are practical tips for getting things working well:

® Use shell scripts rather than commands - The "-file shellMapper.sh" part isn't entirely necessary. You can simply use a clause like "-mapper
'sed | grep | awk™ or some such but complicated quoting is can introduce bugs. Wrapping the job in a shell script eliminates some of these issues.

® Don't expect shebangs to work - If you're going to run other scripts from inside your shell script, don't expect a line like #!/bin/python to work. To
be certain that things will work, run the script directly like "grep somethinglinteresting | perl perlScript | sort | uniq -c"

See Also

®* HowToDebugMapReducePrograms
® HadoopStreaming Alternativelnterfaces
® Hadoop Streaming

https://cwiki.apache.org/confluence/display/HADOOP2/HowToDebugMapReducePrograms
https://cwiki.apache.org/confluence/display/HADOOP2/HadoopStreaming+AlternativeInterfaces
http://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html

	HadoopStreaming

