

Open Source Search

Doug Cutting
cutting@apache.org

Information Retrieval Seminar
December 05, 2005
IBM Research Lab

Haifa, Israel

Lucene pre-history: Xerox PARC

● Text Database (TDB) 1988-1993
– in Common Lisp
– B-Tree based (with optimizations)
– phrase & ranked searching
– vectors & clustering
– used only in some prototypes

● Lessons
– seek per <term,doc> pair too slow
– wanted real users

Lucene pre-History: Apple ATG

● V-Twin, 1993-1996
– in C++
– B-tree based, with optimizations

● slow to update large collections except by merging indexes
– no proximity: ranked search only
– used in Sherlock (1998), Spotlight (2004) etc.

● Lessons:
– batching seeks still too slow

● B-trees fragment; index merging required
– developers don't like subclassing

Lucene pre-History: Excite

● Architext (1996-1998)
– C++, originally written by Graham Spencer
– merge-based indexing (4-stage process)
– 2-level files (subset of keys in RAM w/ pointers to data)
– no fields, tf*idf ranking, w/ boolean proximity
– 250M page indexes, ~1000 searches/second peak

● Lessons
– merging indexes scales optimally
– server-side rocks, but C++ fragile
– closed-sourced code can be lost

Seek versus Transfer

H I J K L M ...A B C D E F

G O U

● B-Tree
– requires seek per access
– unless to recent, cached page
– so can buffer & pre-sort accesses
– but, w/ fragmentation, must still seek per page

Seek versus Transfer

● update by merging
– merge sort takes log(updates), at transfer rate
– merging updates is linear in db size, at transfer rate

● if 10MB/s xfer, 10ms seek, 1% update of TB db
– 100b entries, 10kb pages, 10B entries, 1B pages
– seek per update requires 1000 days!
– seek per page requires 100 days!
– transfer entire db takes 1 day

Lucene History

● 1997-98: written in 3 months, part-time
● 1998: Licensed to one client
● 2000: open source on Sourceforge.net

– GPL at first, then LGPL
● 2001: moved to Apache
● 2005: Apache top-level project

Original Lucene Goals

● in Java
– new environment, no existing search engines

● no config files, dynamic field typing
● simple, well-documented API

– no user subclassing required
● support commonly used features

– fields, booleans, proximity, tf*idf ranking
● scalable & incremental

– aimed for ~10M document indexes on single CPU

Lucene Architecture

store document analysis
index
search

Lucene Indexing Algorithm
● maintain a stack of segment indexes
● create index for each incoming document
● push new indexes onto the stack
● let b=10 be the merge factor; M=∞
● for (size = 1; size < M; size *= b) {

 if (b indexes of size docs on top of the stack) {∃
 pop them off the stack;
 merge them into a single index;
 push the merged index onto the stack;
 } else {
 break;
 }
}

Lucene Indexing Algorithm

Lucene Indexing Algorithm: notes

● multiway merge: process at transfer rate
● average b*log

b
(N)/2 indexes

– N=1M, b=2 gives just 20 indexes
– fast to update and not too slow to search

● optimization
– single-doc indexes kept in RAM, saves system calls

● batch indexing w/ M=∞, merge all at end
– equivalent to external merge sort, optimal

● segment indexing w/ M<∞

Lucene Search Algorithms

● merge streams of postings, ordered by <doc, pos>
– can skip ahead in stream
– collect only top sorting hits

● lots of operators
– boolean, phrase, span, range, etc.

● scoring is (modified) tf*idf by default

Lucene Status

● 1.4.3 release widely used
– wikipedia, eclipse, etc.
– translated to C, C++, C#, Python, Perl & Ruby

● 2.0 release nearing completion
– api cleanups
– lots of new features, bug fixes & optimizations

● users don't subclass
– but developers do, to extend

● if I'd tried to sell it
– it would have created less commerce

Lucene Future

● no central planning
– Andrew Morton: “Whatever people send me.”

● wish list
– extensible index format
– easy federation
– web service

● what would you add?

Nutch

● web search application
– crawler
– link graph

● link analysis
● anchor text

– document format detection & parsing
– language, charset detection & processing
– extensible indexing & search

Nutch Documents

field stored indexed analyzed
url Yes Yes Yes

anchor No Yes Yes
content No Yes Yes

site Yes Yes No
lang Yes Yes No

...

Nutch Analysis

● Defined w/ JavaCC
● Words are (<letter> | [0-9_&])+

– or acronyms: <letter> [.] (<letter> [.])+
– or CJK

● First word in each anchor gets big position
increment, to inhibit cross-anchor matches.

● No stop list or stemmer.
● URLs, email, etc. tokenized same as other text.

Nutch Queries
• By default:

• require all query terms
• search url, anchors and content
• reward for proximity

• E.g., search for “search engine” is expanded to:
• +(url:search^x anchor:search^y content:search^z)
• +(url:engine^x anchor:engine^y content:engine^z)
• url:“search engine”~p^a
• anchor:“search engine”~q^b
• content:“search engine”~r^c

Query Parsing

● Certain characters cause implicit phrases:
– dash, plus, colon, slash, dot, apostrophe and atsign
– URL & email are thus phrase searches
– e.g., http://www.nutch.org/ = “http www nutch org”,

doug@nutch.org = “doug nutch org”, etc.
● Stop words removed

– unless in phrase or required.
– can use N-grams if in phrase

● Plugins can extend for new fields

Nutch N-Grams

● Very common terms are indexed with neighbors.
– E.g., w/ “the”, “http”, “www”, “http-www” & “org”:
– “Buffy the Vampire” is indexed as

buffy, buffy-the+0, the, the-vampire+0, vampire,
– “http://www.nutch.org/” is indexed as:

http, http-www+0, http-www-nutch+0,
www, www-nutch+0, nutch, nutch-org+0, org.

– terms are field specific
– improves performance of phrase searches

Nutch N-Gram Query

● For explicit phrase query: “Buffy the Vampire”:
– for content field, translated to:

content:“buffy-the the-vampire”
– much faster b/c we don't have to search for “the”

● For query: http://www.nutch.org/:
– implicit phrase: “http www nutch org”
– for URL field, translated to:

url:“http-www-nutch www-nutch nutch-org”

Nutch Scalability Goals

● Scale to entire web
– pages on millions of different servers
– billions of pages
– complete crawl takes weeks
– very noisy

● Support high traffic
– thousands of searches per second

● State-of-the-art search quality

Scalability

● To meet scalability goals:
– multiple simultaneous fetches

(~100 pages/second / CPU, ~10M / day)
– parallel, distributed db update

(100M pages @ 100 pages/second / CPU)
– distributed search

(2-20M pages, 1-40 searches/second / CPU)

Initial Scalability

● Initial implementation is scalable...
– parallel processes on multiple machines
– some serial bottlenecks, but w/ plans to resolve
– 100M web pages demonstrated

... but not to billions of pages

● scales better than other open source options
● but large installations are operationally onerous

– manually monitoring multiple machines is painful
– data-interchange and space-allocation difficult

● with single operator
– hard to use more than a handful of machines
– effectively limited to ~100M pages

NDFS

● modelled after Google's GFS
● single namenode

– maps name → <blockId>*
– maps blockId → <host:port>replication_level

● many datanodes, one per disk generally
– map blockId → <byte>*
– poll namenode for replication, deletion, etc. requests

● client code talks to both

MapReduce

● Platform for reliable, scalable computing.
● All data is sequences of <key,value> pairs.
● Programmer specifies two primary methods:

– map(k, v) → <k', v'>*
– reduce(k', <v'>*) → <k', v'>*
– also partition(), compare(), & others

● All v' with same k' are reduced together, in order.
– bonus: built-in support for sort/merge!

MapReduce job processing

split 0 map()
split 1 map() part 0reduce()
split 2 map() part 1reduce()
split 3 map() part 2reduce()
split 4 map()

input outputmap tasks reduce tasks

Nutch on MapReduce & NDFS

● Nutch's major algorithms converted in 2 weeks.
● Before:

– several were undistributed scalabilty bottlenecks
– distributable algorithms were complex to manage
– collections larger than 100M pages impractical

● After:
– all are scalable, distributed, easy to operate
– code is substantially smaller & simpler
– should permit multi-billion page collections

Nutch Status

● used in production
– intranet: Oregon State University
– vertical: Creative Commons
– larger-scale verticals: Internet Archive

● scaling well
– 200M pages indexed on 35 boxes
– 50M pages crawled & indexed in 24 hours on 20 boxes
– linear scaling on 200 boxes

Nutch Future

● not centrally planned!
● wish list

– web-based config
– better incremental updates
– shingle-based dedup
– spam detection

● what would you add?

Thanks!

http://lucene.apache.org/

http://lucene.apache.org/

