
Nutch:
Open-Source

Web Search Software

Doug Cutting
<doug@nutch.org>

November 26th 2004
University of Pisa

Lucene is...

● A mature Apache open-source project;
● Java library for text indexing and search;
– Not an application;

● A large community of contributors;
● The search technology behind a lot of web sites

& applications (ZOË, JIRA, Lookout, Furl, etc.)
● http://jakarta.apache.org/lucene/
● A Lucene book is out next week!

Nutch is...

● A young open-source project;
● Web search application software;
● Small but growing group of users and developers;
● Behind a few sites.
● Soon to be an Apache project.
● Built on Lucene

Nutch isn't...

● A business;
– Currently a non-profit legal entity to own copyright

● Only until it joins Apache
– No employees.

● A search site;
– But want to power lots of search sites;
– From domain-specific, to whole-web.

● A research project.
– But want to be platform for research.

Nutch's Civil Goals

● Increase availability of web-search technology.
– standard civil goal of open source projects

● Increase transparency of web search.
– search is essential to internet navigation
– yet algorithms are secret
– free, open-source implementation should help.

Nutch Technical Goals

● Scale to entire web
– pages on millions of different servers
– billions of pages
– complete crawl takes weeks
– very noisy

● Support high traffic
– thousands of searches per second

● State-of-the-art search quality

Nutch Architecture

fetch lists

fetchers

updates

content

indexers

searchers

indexes

web servers

web db

Scalability

● To meet scalability goals:
– multiple simultaneous fetches

(100+ pages/second / CPU, ~10M / day)
– parallel, distributed db update

(100M pages @ 100 pages/second / CPU)
– distributed search

(2-20M pages, 1-40 searches/second / CPU)

Web Database

● Page Database
– Used for fetch scheduling.

● Link Database
– Represents full link graph.
– Stores anchor text associated with each link.
– Used for:

● Link analysis;
● Anchor text indexing.

Web Database Implementation

● Not an RDBMS application!
– 100M pages @ 100 pages/second
– Requires 1000 link updates/second in 1B entry table
– B-tree's become fragmented, forcing seek/update
– Seeks require ~10ms – order of magnitude too slow!

● Instead, sort updates and merge w/ entire DB
– 100M links/day, 100B/link, ~10 passes = ~100GB xfr
– @10MB/s:10ks sort + 100GB merge in 10ks = 6hrs

Nutch Documents

field stored indexed analyzed
url Yes Yes Yes

anchor No Yes Yes
content No Yes Yes

site Yes Yes No
lang Yes Yes No

...

Nutch Analysis

● Defined w/ JavaCC
● Words are (<letter> | [0-9_&])+
– or acronyms: <letter> [.] (<letter> [.])+
– or CJK character

● First word in each anchor gets big position
increment, to inhibit cross-anchor matches.

● No stop list or stemmer.
● URLs, email, etc. tokenized same as other text.

Nutch Queries
• By default:
• require all query terms
• search url, anchors and content
• reward for proximity

• E.g., search for “search engine” is expanded to:
• +(url:search^x anchor:search^y content:search^z)
• +(url:engine^x anchor:engine^y content:engine^z)
• url:“search engine”~p^a
• anchor:“search engine”~q^b
• content:“search engine”~r^c

Query Parsing

● Certain characters cause implicit phrases:
– dash, plus, colon, slash, dot, apostrophe and atsign
– URL & email are thus phrase searches
– e.g., http://www.nutch.org/ = “http www nutch org”,

doug@nutch.org = “doug nutch org”, etc.
● Stop words removed
– unless in phrase or required.
– can use N-grams if in phrase

● Plugins can extend for new fields

Nutch N-Grams

● Very common terms are indexed with neighbors.
– E.g., w/ “the”, “http”, “www”, “http-www” & “org”:
– “Buffy the Vampire” is indexed as

buffy, buffy-the+0, the, the-vampire+0, vampire,
– “http://www.nutch.org/” is indexed as:

http, http-www+0, http-www-nutch+0,
www, www-nutch+0, nutch, nutch-org+0, org.

– terms are field specific
– improves performance of phrase searches

Nutch N-Gram Query

● For explicit phrase query: “Buffy the Vampire”:
– for content field, translated to:

content:“buffy-the the-vampire”
– much faster b/c we don't have to search for “the”

● For query: http://www.nutch.org/:
– implicit phrase: “http www nutch org”
– for URL field, translated to:

url:“http-www-nutch www-nutch nutch-org”

Intranets & Verticals
Part 1: Scale

● Fetch, DB & search can all run on one box.
● Complete crawl takes only hours.
● Handful of servers on LAN—easy to overload!
● Lessons:
– may need to throttle fetcher
– need simple operation—single command
– can crawl deeper

Intranets & Verticals
Part 2: Control

● cleaner content
● knowledge about structure of sites (cgi's, etc)
● lessons:
– can index more dynamic content (cgi's, etc.)
– can better customize crawler to sites

Intranets & Verticals
Part 3: Quality

● only ~1M pages
● lesson:
– not great for link analysis
– but plenty for anchor text

Intranets & Verticals
How To Step 1: Install

● Nutch requires only Java & JSP.
● Download & unpack.
● No admin GUI (yet)
– command line
– config files

How To Step 2: Configure

● Specify root URLs.
● Specify URL filters.
– a separate config file, containing regexps
– each either includes or excludes URLs
– first matching pattern determines fate of each URL

● Optionally, add a config file specifying:
– delay between fetches
– num fetcher threads
– levels to crawl

URL Filter Example

skip image and other suffixes
-\.(gif|jpg|pdf|doc|sit|rtf|exe)$
skip URLs w/ certain characters
-[?*!@=]
accept hosts in nutch.org
+^http://([a-z0-9]*\.)*nutch.org/
skip everything else
-.

How To Step 3: Test Run

● Crawl just a few levels deep
bin/nutch crawl urls \
 -dir crawl.test -depth 3 \
 >& crawl.log &

● Examine output log for:
– warnings

● exclude some file types?
– sites hit too hard (e.g., infinite sites)

● exclude some hosts or paths
– sites not hit?

● add more root urls, or crawl deeper

How To Step 4: Finish up

● customize the look and feel
– by default, uses XSLT template
– or can roll your own.

● perform a full crawl (depth = ~10)
● tell folks about it!

Advantages

● Free!
● Scalability & quality.
● Open source easier to:
– Customize

● e.g., ranking, operators, look & feel, plugins
– Debug

● You've got the full source!
– Extend

● Non-HTTP, non-HTML content, metadata, etc.

Demonstrations

● Intranet: http://search.oregonstate.edu/
● Intranet: http://campusgw.library.cornell.edu/
● Vertical: http://www.playfuls.com/
● Vertical: http://search.creativecommons.org/
● Web: http://www.objectssearch.com/

Preliminary Evaluation at OSU:
Nutch versus a Google Appliance

● For OSU's top-25 queries:
– 9 queries nutch and google were both perfect: 10/10
– 2 queries nutch was slightly better
– 2 queries google was slightly better than nutch
– 1 query google was much better: 10 to 6
– 1 query google was much better: 10 to 6
– 1 query both scored 5
– Google Appliance had a slight overall advantage.

Thanks!

http://www.nutch.org/

doug@nutch.org

