02/28/04



Presentation Goals

Raise and organize users’ knowledge on the Avalon
Framework & its contamers to, the point when: participants
are able to complete their own “HelloWorld™ application.

Invoelve team members in a constructive discussion on the
Avalon-based development best practices.



Agenda For OurJourney;,

B [ntroduction to the Avalon “umbrella™ project.
B A discovery trip into Avalon’s [ramework.

B [ntroduction to Avalon’s libraries/subprojects.
B Fortress as an entry level, lightweight container.
B Analysis of the Phoenix application server.

B Application server deployment & administration.
B A brief comparison of Merlin and Phoenix.
B Framework’s advantages and drawbacks.

B Questions and open forum.



What st Avalon Atter Al

B Framework )
B Excalibur

B Cornerstone

Avalon subprojects with

B Fortress > their own development

. lifecycle and releases.
B Phoenix J

B Merlin
®m Small Utilities -/




Avalenr's Vajor Players

B Framework < Interfaces, contracts, default impl.

B Excalibur < Server-side component library

B Cornerstone < Server-side services library

B Fortress < Lightweight container for depl. & exec.
B Phoenix < Server kernel for deployment & exec.

B Merlin < Server kernel for deployment & exec.



Subprojects: IDependencies

B They can be used together or independently.

Fortress/Phoenix/Merlin

Cornerstone ’

Excalibur

Avalon Framework

|

Logging API



Avalon Umbrella Project (15

B Vajor project properties:
— Focused on the server-side solutions.
— Well suited for horizontal market frameworks.
— Can be easily integrated with any J2EE framework.

— Subprojects can be used for java GUI applications.

B Four major design concepts:

— Inversion of Control (IoC).

— Separation off Concerns (SoC).

— Component Oriented Programming (COP).
— Service Oriented Programming (SOP).



Avalon Umbrella Project (2)

B Advantages ol the COP architectures:

— System can be broken up into small, reusable facilities.
— Provides distinct work imterface and'its implementation.

— Uses work and lifecycle mterfaces and their contracts:

» Allows for easy component replacement.
» Reduces complexity between business units.

» Gives us a higher level of integration than with classes.
— Provides a loose coupling between logical units.

— Can be used to create low-level subsystems.



Avalon Umbrella Project (5)

B Advantages ol the SOP anchitectures:

— Excellent for top-down sysiem design approach.
— One or more services can provide a complete solution.
— Allows for creating high-level subsystems: ...

— ... that can be upgraded to an executable utility level.

Service/Utility )

Component 1 Component N One or more service(s)

> can be wrapped up by
(or become) your

Other comp., services or utilities: parent project.
loggers, etc.




Avalon Eramework (1)

B [Framework”s relationship to other projects:
— Provides basis tor all other Avalon subprojects.
— Addition to your work interfaces and implementations.

— (Can be used independently i your own: selution(s).

Fortress/Phoenix/Merlin Your Own Application or Kernel
Cornerstone/Services Your Own Application
Excalibur/Components Framework
Avalon Avalon
Framework Framework




Avalon FEramewornk (2)

B Components as major app. buildimg blocks:

—T'hey live within a context called'a contaier.

— Can implement several mterfaces to identity all the
areas of' concern for the project.

= The container 1s required to take a component through
all of 1ts liiecycle stages.

— Some of the lifecycle events handled by a component
must be propagated to all of its children implementing
the appropriate interfaces.

» This includes Initializable, Startable, Suspendable and
Disposable.

11



Avalon: Eramewornk (3)

B What 1s an Avalon component?

Marker (lifestyle ) interfaces (deprecated in some Avalon products)

~

ThreadSafe @ SingleThreaded @ Pollabl Work interfaces

Avalon Framework Component
——@ LogEnabled I

——¢@ Contextualizable
Class 1 Class N —@ Composable
Version @—— ] —————@ Sdehiceable

@ @ MA¥%inetrizable once
\ / ——@ Initializable

v . —@ Startable
Internal Implementation
—@ Disposable J

Occur
> only

Compone

Deprecated
interface

ualizable

Occur multiple times during component's lifetime

l l Recontext- l l
Suspandable Recomposable Reconﬁgurabl)




Avalon FEramewonk (4)

B Component’s liecycle:

—Speciiies the fimite number off component™s, states.
—Speciiies the order in which transitions may oceur.

—Its event (method invocation) always represents a transition
to a speciiic component phase.

—Speciiies method invocation/event multiplicity.

—[_eaves containers with a decision which component-
supported methods it needs to honor.

—Component may choose to implement some/none.

—Is specified in the Avalon Framework API.

13



Avalon Eramewonk (5)

B Three major phases of a component litecycle:

— Initialization

» Startable, ILogEEnabled, Serviceable, Coniigurable; Initializable,
elc.

— Active Service

» Suspendable, Recomposable, Reconfigurable, etc.

— Destruction
» Startable (start/stop), Disposable

Note:
Component developer can always rely on the order of events during run time.

14



Avalon Eramework: (6)

B Component identiiication:

— Components have responsibilities m their systems. ...

... responsibilities are described by work imterfiaces ...

... work iterfaces become comp. roles in the system.

Consequently:

Since components are identified by their roles ...

... roles become components’ signatures.

15



Avalon: Eramewornke (7))

B What are component contamerns?

— Parent components, senvices o1 applications istantiating
and' controlling child'components™ lifecycles.

— Entities that supposed to keep reterences of their child
components for their entire lifetime.

— They can be as simple as the static “‘main” methods called
from a command line.

— According to the IoC, creation and life-cycle methods
should follow from a container to a component only.

— One can control component’s work environment using
Context and configuration objects as well as Component

(now Service) Manager. I



Avalon: Eramewornk: ()

B Containers managing components manually:

If component

Container (App or higher level component) A Wants To use
__________________________Rgl'e_re_nge% component ‘B’.
| ——

-7 RN |
\'/ yig Add \\\ Created by container }
Lr-
I ComponentManager 1 Component A|
(default or your own) '
Roles@ Roles@ 6
Lifecycle‘ LifecycleH
| Created by container |
AN - Add Created by container
Created by container Created by container R Component B
DefaultConfiguration Logger
Roles@—
LifecycleH
o
|
If gomponent
7 Y 7 Y [
/I\ I t ‘Bf needs
: > Config. .| Logger : cofpfi-gurable
: config. : inform.
I |

[ References _ j<

17



Avalon Eramework: (9)

B ServiceManager (prev. ComponentVanager):

— Supply component dependencies to other components.
— Allow simple component/service lookup and discovery.

— Designed for cases when you have multiple types o
components with distinct roles.

— Requires that you release any component for which you
have obtained a reference (SM needs full control over
components). There may be situations when you don’t!

— SM can be passed to a child component but only with
component roles that this child requires (remember, a child
component can NOT talk directly to its parent).

Note:
ServiceManager IS NOT ServiceSelector. 18




Avalon: Eramework (10)

B ServiceSelector (prev.. ComponentSelector):

— Designed for cases where you have multiple types of
Components playing the same nole m your system.

— (Can be used by Containers and other Components.
— Component Selectors are Components themselves.

— A Component can get a Component Selector from
ServiceManager by its role (Component can receive
ServiceManager via Serviceable).

— A Selectors use arbitrary objects for hints to select one of

P)

Their use has been discouraged.

many Components for a role, 1.e. String, [Local, etc.

Useful suggestion:

If you want to use “ComponentSelector” in your application, follow this naming
convention: take the role name assigned to your component and append word “Selector”.
This will create a name such as: “org.apache.myserver.MyCompNameSelector”. 19




Avalon: Erameworks (1°1°)

B Well, ComponentSelector 1s just a

[~ ®
Component:
A . If component
Container (App or higher level component) /—|‘A’ Wants fo use \
References
P T /_;: S _‘ other comp.
1Y, | 5 )
[ NV [~ N 4
I Component < 6. Store I Component A |
______ I
Manager
Roles@ Roles@ 6
Lifecycle. @® CompSelector LifecycleH
@ Component A .
|7 i]e_lC_S_>
| @® Component B I
= - >
| ~ - Set “C” .
| 2.Create and store P \8_;( EONE !/ 3 \\I
I 4. SI(TI:.C.‘- I
Component Component B
Selector
Roles@ Roles@—
Lifecycle@ Lifecycle @——
| |
Includes configuration and logging classes like before.

20



Avalon: Eramework (12)

B Altermative manual component management:

Container (App or higher level component)

Roles@

Lifecycle‘

Roles.

Lifecycle @

components to it yourself.

e ____ References
— I
NV 4_
Component ¢ 4. Store_| I Component A:
Manager
Roles@ 6
LifecycleH
R e ?I
.//"—-1--\\V //\{\ -.:%- et /\ //"';'\\V
5. Store™ I
Component Component B
Selector
Roles@—
You either allow a CS to R .
act as a factory or add

Includes configuration and logging classes like before.

If component
‘A’ wants to use
component ‘B’.

21



IZxcalibur Comp: [Cibramy: (1)

B Sect off utility projects used by other contarmer
flacilities (comp., services & applications).

B Coarse-grained, ready to use components 1or:

— Component litecycle management.

— Container configuration management.

— Data source management & internationalization.
— Asynchronous event handling.

— Integrating logging & resource monitoring.

— Thread-safe resource pooling.

— XML utilities/wrappers & other.

22



IZxcalibur Comp: [Cibrany (2)

B [Low-level component mgmt with handlers:

po—

Container (App Or higher level component) Create and ask to create

component. Pass: class
P name, CM, conf., RM

7
/ | \\I yg 8 - ~N - ( 3 \\] and Context
I DefaultComponent 1 ComponentHandler
Manager C i
Roles@ Cmp.acc.@ Ciporcn
Lifecycle. LifecycleH
= [
-~ = -
I =g 7 // I
- - 7
— = >< 9
7/ . /7N T — -
[y Optond~T 7S Yy 7 5> 1 ComponentHandler
DefaultConfiguration Logger C ¢
Cmp.acc.@— CHiporcn
LifecycleH
7'y ———_. =7 |
Optional \—
ptiona N \-4_-‘ //,‘
Optional > COllﬁg. Create and ask to create
component. Pass: class name,

CmpMgr, cfg, context, RoleMgr.

Note: setting up ComponentHandler is performed through its constructor.

N

Looks more
complex but
it translates
to very few
lines of code

23



IExcalibu Comp;: ICibrary (5)

B [Declarative component management:

— (Case where the “RoleManager” component 1s not used.

Container (App or higher level component)

po— — —

7 1\ 7 \, 7. Contextualize 7\, 8.Initialize

[ N \/ [ N

recently

I ExcaliburComponentManager (ECM)
Roles @— DefaultContext % Comp.Handler ’EE Comp.Selector
Lifecycle [ ]
|
Optional For cach Optional Com
P component P p-
Each comp. will receive its own config. object.created from xxx.conf
N N file.
SN 14 | 6 SN
2 5
[ N | | [ N
DefaultConfigurationBuilder| 3. Create Configuration Logger
—&—nit- — >
3
. | Component N
list & info Includes component configuration
informption (see next slide)

Use of H

CM has been

discouraged

since it will be soon
deprecated.

24




IExcalibu Comp;: ICibrary (4)

B ECM coniiguration file:

<my-system>
<component role="org.apache.avalon.excalibur.datasource.DataSourceComponentSelector"
class="org.apache.avalon.excalibur.component.ExcaliburComponentSelector">
<component-instance name="documents"
class="org.apache.avalon.excalibur.datasource.JdbcDataSource">
<pool-controller min="5" max="10"/>
<auto-commit>false</auto-commit>
<driver>org.gjt.mm.mysql.Driver</driver>
<dburl>jdbc:mysql:localhost/mydb</dburl>
<user>test</user>
<password>test</password>
</component-instance>
<component-instance name="security" class="oyg.apache.avalon.excalibur.datasource.JdbcDataSource">
<pool-controller min="5" max="10"/>

Child components for
the ComponentSelcetor.

N

Component’s pseudo-name/alias
that can be used for CS lookups.

</component-instance>
</component>
<component ="org.apache.bizserver.docs.DocumentRepository™
="org.apache.bizserver.docs.DatabaseDocumentRepository ">
<dbpool>documents</dbpool>
</component>

¢ 25

myComponents.xcon

</my-system>



[Excalibur Comp: [Libramny (5)

B Declarative Component management:

— Using “RoleManager” Component.

Container (App, Service or higher level component) \
- —= 10. Contextualize o
71N\ 7N 77N\
! A\ N & Initialize 7 \
I xcaliburComponentManager < 9 I DefaultRole
DefaultContext| Comp.Handler Manager
Roles@— Roles@—
Lifecycle. ' For each Lifecycle‘
Optional
component
: Even fewer
Iﬂw | Optional Component .
here I = /I\ lines of code;
~
7N |4 ~8 PRiN | 8 however, RM
N - . .
- \I . ' . - N — is being
DefaultConfigurationBuilder _&1 Create Configuration Logger Configuration e
it

N AN ~ =

| | ~— - f

X X T =~ _3b Crae&init ——7 |
Component Maps aliases [
list & info to role namesj¢- — — — — — — — — — — Usedby 4

\w”— \/’—
Note: two configuration files are used by two different Configuration objects. / 26




[Excalibur Comp. ICibrany (6)

B Managing contiguration with aliases.

<role-list>

<role
nane="or g. apache. aval on. excal i bur. dat asour ce. Dat aSour ceConponent Sel ect or"/l\
shor t hand="dat asour ces" /
def aul t - i

cl ass="org. apache. aval on. excal i bur. component . Excal i bur Conponent Sel ec;r,dr ">

<hi nt shorthand="j dbc" /
cl ass="or g. apache. aval on. excal i bur . dat asour ce. JdbcData@ourceCBnponent”/>

<hi nt shorthand="j2ee" - myapp.roles
bl aoo—' Ul B Cl[JClbllC ClVO.I Ull. c)\\.,cu I UUI . dat adaosuUul LT Jg\:USat aouu1 bCCUIIpUIICIIL = II
<m-sysheg  ___—==" /

hor t RLfiRC" PANES! I DMERLRARI £

EIN00 QQQUSF beépﬁkﬂe Bi z0B¥Tel9d6gs. DatgbaseDocumant Repository"/ >
</rol e-| <gpgrl >j dbc: nySql : [ ocal host/ nydb</dbur |

/
</jdbc> // Lookup performed by the
<j dbc name="security"> /// ExcaliburComponentManager
....... ///
</j dbc> /,///
</ dat asour ces> -

— —
— o —

<r eposi t or &
<dbpool >docunent s</ dbpool >
</repository>
</ nmy-systenp

myapp.xconf

27



IExcalibum Comp;: IEibrasy (7))

B Using the component management mirastructure.
— ILetting components use their piers through ECM:

Container/App ECM Component A Component B

Create & initialize >

Create & configure >
[ service (myself) >
Store srve mgr locally
Partof“Serviceabie’ <
(cmp.lifecyc.)interface Create & confisure >

Serv.Selectpr

o Y —— o he ohfah
v _____service (myself) sF can be obtalined

at this stage:

Retrieve component >

Invoke business methods Watch for ™
tread safety
< Retrieve pier component
Avoid aggregating
Invoke pier comopnent > «B” by “A” while
< Release component 4 using pooled comp.

Reset comp. reference 28
< /



IExcalibu Comp: IEibrary: ()

B Fully re-usable Excalibur components & APIS:

— Command! lime arguments processor (CILLT).

— (Collection utilities (Java collections enhancements).

— Component life-cycle management (ECM).

— Logging utility wrapper/LLogKitManager (depricated).
— JDBC data source wrappers (IDataSourceComonent).
— /O specitic utilities (1.e. FileFiler).

— Component pool implementations (i.e. DefaultPool).
— Multithreading assisting utilities (Lock, Event, etc.).

— ... and much more.

29



Wihiat 1S, Avalon (Cornerstonc

B Reusable library oif higherlevel, componeni-like
entities called Blocks.

B One or more components per Block providing a
complete solution or utility.

B [mplement Services that other server application
Blocks can use and depend on.

B Cornerstone reusable services include:
— Connection and socket management.
— Principal/role management.
— Scheduling and others.

Note: there 1s a very little difference between a Block and a Component; well, one
uses Context the other BlockContext (BlockContext are used by Phoenix only). 3,



Avalon Cormernstone (1)

B Properties off Avalon Blocks:

— Provides a Service to other Blocks using an interface.
— Uses meta-data to expose 1ts Services to others.
— Uses meta-data to specity its own dependencies.

— Implements Services using component(s) or its internal
class(es), where the top-level class implements a Service.

— Is a versioned entity, as specified in its meta-data.

B Properties of Avalon Services:

— Specity how other Blocks can utilize its services.

— Note: a need for Block interface extending a Component
interface has been removed from Avalon. 31



Avalon Cornerstone (2)

B Blocks are core of the SOA.

— They are treated differently i Phoenix & Merln!

WH
BlockContext.

Avalon Block
Service A @ Component 1 Component 2 | —74-® Dependency 1
Class 1 Class N Class 1 Class N
Service B @ -~ ~1-® Dependency 2
Component 3 Component 4 ® Service C
SOAP Srvc @ Class 1 Class 2 Class 1 Class 2
® Service B
. . Bock
Block Configuration < Info \
Block metadata.
Jar file

Block clients can see only its implemented Services A, B, C, and D.



Avalon Cornerstone (35)

B Will work with Phoenix and Merlin servers!

— Provide natural transition path for your code.

— Ready (7) for any future kemel architectures.

Localized changes for
transition to Merlin.

Phoenix Merlin /
Your Own App(s) Your Own App(s) /
Cornerstone Cornerstone

Avalon Avalon
Framework Framework

33



Avalon Foriress (1)

B [Fortress container replacing deprecated ECM:

— Provides asynchronous component management.
» Through the use of tightly-controlled background threads.

— Alleviates some oi the comp. maintenance difticulties.
» Hard-coded comp. Roles replaced with JavalDoc tags.

» Hand-coded metadata files replaced by ant-generated.

— Integrated with Instrumentation package.
» GUI view of the system health inspection at run-time.

» Monitor component instances per component handler.

— Easier to work with 1n your GUI, embedded, etc. app.

» This includes servlet-like engine environments!

— Provides support for the life-cycle extensions. 34



Avalon Foriress (2)

Optionally, one may also
use a root container around

B Basic Fortress-based architecture/—

the Fortress CM.
Your Own App (GUI, console, etc.) /
Fortress Component Manager v/

- ComponentHandler 1 ComponentHandler N
g i !
= = _
S
% Component 1 Component N
S
5]
Q I | I |

Configuration Logging

35



Avalon Fortress, (3)

B Coniligunng components, via meta mio; tags:

— Allows for comp. circular dependency: discovery.

— Meta miormation closely tight to its source.

Yok

* My component implementation.
&

* @avalon.component
* @avalon.service type=“MyService"

Marker tag marking class
as a component

Service tag (ong per interface)

where type is a class name.

Component conffiguration

* @x-avalon.info name="my-co
* @x-avalon.lifestyle type="pooled" <
*/
public class MyComponent implements Rolelnterface

{

/...

}

name.

Component managemen

thread or transient).

36



Avalon Fortress, (4)

B Specilying dependencies via meta mio) tags:

— Component needs to implement “Serviceable™.
— Fortress does the rest of the heavy-duty work.

— [t provides ant-task to collect all the metadata into.

/>l<>!<

* Get all the dependencies.
&

* @avalon.dependency type=“MyService"
* @avalon.dependency type="OtherService"

*/
public void service( ServiceManager manager )

{
}

As defined in a class header of
another component.

/...

37



Wihat [is' Phioenix?

B A high-level container ior componentized,
stand-alone server applications.

B An environment for running multiple server
applications within the same JVIVI.

B Configurable environment for rapid
application assembly and deployment.

B Deployment platiorm with a high level ot
application 1solation and easy management.

B An extensible & customizable micro-kernel.
m Container for a set of Avalon components. s



Phoenix: Inr An Enterprise

m Sulta :)le tor multiple deployments in one JVIVL.

Client Space

' 3 ' 3 ' 3

Enterprise
Solution

v A\ 4 A\ 4

Components’ & Services’ Libs

Single
S o

solution

Your Application Domain

/ 39




Phoenix: Kermel (1)

B Provides facilities to manage server application
environment, mcluding:

— [Log management, class-loading, thread management & securnity.

— Uses XML configuration files for rapid (re)assembly.
B Provides native support {or use in:

— Command-line, stand-alone applications.
— Unix daemon & Windows services (1f service wrapper used).

— Other environments, 1.e. servlet containers.

B Written as an extensible micro-kernel:

— Plug and/or remove services and functionality easily.
— Customize existing functionality at the administrative level.

— Leverage proven Avalon Framework for compatibility & reuse.



Phoenix: Kermel (2)

B Basic application server archiiectune:

— e e e e e e e e e e e e e e e e e e . -
| Phoenix |
PhoeniX ApplicatiOl‘l Can be a service pr e -
I a small componept. Contalner I
| [ [ Config.xml I
| Block A BInf Block B [ - |
! Assembly I
| | o— xml |
- Your development Your development
| | | Environment |
| Block C BlInf Block D . ] .
A (Optional) I
| |
| | XxxMBean |
| Excalibur lib block Third party/download ? A |
I Name: “BlockD.xinfo” I
Blocks are jarred separately along with their bloanfo. Optional, for IMX
| |




Phoenix: Kermel (3)

B Block properties:

— Follows a standard! Avalon component format.

— (Can recerve an instance off BlockContext (ext. Context).
— Can implement any of the Avalon lifecycle methods. ..
— ... except to “suspend” and “resume’.

— Accesses pier-blocks through Serviceable interface.

— Contigured through the BlockInio file.

— Packaged with 1ts BlockInio in a jar file.

— Can be used as a wrapper for non-Avalon code/utility.
— Managed by the Phoenix (or other) server kernel.

— Needs to be documented in order to be re-useable!

— Should be thread-safe to be used in Phoenix. 42



Phoenix: Kermel (4)

B Block properties (cont. )

— Empty public constructor. D

~
~

— Setter methods for its configuration (optional). i consquence: )

7

-~
-

— “mitialize()” method for setup & initialization. <
— Should avoid Singleton design pattern.
— Can be tested independently of the Phoenix.

» Use the main-method execution wrapper.

— ... and most importantly:

Provides truly plug-able solution with help of the separation
of interface and implementation supported by the
‘assembly.xml”.

43



Phoenix Kernel (5)

B Block information file.

Can be generated using ant task.

<7xml version="1.0"7> :
Name (optional, rarely

<blockinfo> used) and block version.
<block>
<name>Fully qualified name of the service interface</name>
<version>1.2.3</version> Services proyided by the block:
</block> ¥ this 1s your work interface you
) want to €Xpose 10 other users.
<services>

. . L . . .
<service name="com.biz.cornerstone.someservices.CertifRequest" version="2.1.3" />

</services> Serv1ce used b?/ the block: other blocks W(?rk
. interfacp. Used in your code to lookup services!
<dependen01€S> (can be alias instead, i.e. A UTHORIZER™).
<dependency>

<role>c0m.biz.cornerstone.som‘gservices.Authorizer</role>
<service name="com.biz.cornerstone.someservice.Authorizer" version="1.2"/>
</dependency>
<dependency>
<!-- Role defaults to the name of service. The service version defaults to "1.0" -->
<service name="com.biz.cornerstone.someservice.RoleMapper"/>

</ dep enden Ccy> Optional management
</d€p endencies> < access point goes here.

CertifRequestServer.xinfo

</blockinfo>



Phoenix: Kemel (6)

B Application anchitecture utilizing listeners:

Phoenix Application

| BlockListener | Block A
(depricated)
Block
»_event

< /

| e
Config. in assembly.xml >/\
/ D N \Block event
K < ———

| ApplicationListener | Block B

Config. in assembly.xml '\

~__—

Phoenix !

Container |

Config.xml

Assembly \

Environment
xml

Application event
(lifecycle notification)

I
I
I
I
I
| am | |
I
I
I
I
I
I




Phoennxs Kermel (7))

B Block Listener (deprecated):

— They are Blocks themselves.

— Receirve notifications during lifecycle of other blocks.

— Events mclude block addition/removal from the app.
— Configured through the “assembly.xml* file.

B Application Listener:

— LLike above, they are Blocks themselves.
— Created before any other application Blocks.
— Receive notifications during lifecycle of application.

— Receive notifications during lifecycle of app’s blocks.

— Must implement Applicationlistener interface.
— Configured through the “assembly.xml” file.

46



Phoenix: Kemel (&)

B Block-based application development process:
— Select reusable library Blocks your app will rely on.
— Design and create your own application Blocks.
— Create a separate jar file for each new Block.
— Wiite application “config.xml™ file.
— Wiite application “assembly.xml™ file.
— Wiite application “environment.xml™ file.

— Package components and their resources into a “sar’ file.

47



e

Phoenix: Kenmel (9)

B “assembly. xmil™ file.

— [Defines how kernel assemblies a server application.

— Provides apps’ block names and' their dependencies.

— Defines the application listeners.

—_
—

-

s
/ Linking
\ 2 blocks

AN

~

~

~

<?xml version="1.0"?>
<assembly>

Lists blodks in your application. / gufalié
. . B 1nto
<Il-- Certification Re&fquest Processor Factory Block --> £ “CertifRequestServer.xinfo” file.

Block

's implementation: fully
ed class name (references block

Ie & 1mpl. CIass). There must be

<block class=“com.biz.cornerstone.someservice.CertifRequestServer*

mame:" ">

. ) ) Block name nsed in
<provide name="“someName" role="Role name1 from the .xinfo file"/> the cnfiguration file
<provide name="someName" role="Role name2 from the .ignfo

<provide name="time" role="Role name from the .xinfo file

> </block>

<block> class=“someClass” name=“someName”</block>

<!l-- More assembly information/blocks go here. -->
<proxy>Asks kernel to provide bleck wrapper.</proxy>
<listener name="myListener” class="fully qualified name”>

</listener>

Defines the application listener
(name referenced in the conf. file).

References a dependent
block/seryice by tts Trame:
g blocks together.

file"/> & referred to locally.

48

L Il
<7aSSemry>

N




Phoenix: Kemel (10)

B “coniig. xml™ file.

— Provides block configuration data.

— Some blocks may not requine any.

— [if used, will be block-specific.

<?7xml version="1.0"7>

</someName>
</config>

Name corres

ponding to a name of
pecified in the

<config> m
< > y2
<!-- ...configuration data here... -->
</ >
<someName>

<paraml>param1-value</param1>
<an-integer>2</an-integer>

mil— 11le.

Block-specific parameter format
wrapped by the Configuration object
(remember, all bets are opened here).

49



Phoenix: Kemel ((1H)

B “cnvimonment.xmil™ {ile (optional).

— Provide server-wide settings mcluding:

» Code-based security management & log management settings.

<?xml version="1.0"7>
<environment>
<logs>
<category name="" target="default" priority="DEBUG" />
<category name="my Authorizer" target="myAuthorizer-target" priority="DEBUG" />
<log-target name="default" location="/logs/default.log" />
<log-target name="my Authorizer-target" location="/logs/authorizer.log" />
<flogs>
<policy>
<keystore name="foo-keystore" location="sar:/conf/keystore" type="JKS" />
<grant code-base="file:${app.home}${/}some-dir$ {/} *" key-store="foo-keystore">
<permission class="java.io.FilePermission" target="${/}tmp${/}*" action="read,write* />
</grant>
<grant signed-by="Bob" code-base="sar:/SAR-INF/lib/*" key-store="foo-keystore">
<permission class="java.io.FilePermission" target="${/}tmp${/}*" action="read,write" />
</grant> 50

</policy> Note: thread pooling configuration deprecated.

P DR R



Phoenix: Kemel ((112)

B Application deployment directories.

— Note: we use dedicated launcher.

Phoenix Application

[ .
Your app. Block Supporting class(es)

manifest

SAR-INF\lib\bbb.jar

META-INF\
| Excalibur BlockI ‘ BInf \ | Third party Block
L
SAR-INF\lib\cce.jar SAR-INF\lib\ddd.jar

!
|
!
|
|
I
i SAR-INF\lib\aaa.jar
|
|
|
|
|
I

o —— i — —

Assembly
xml

\/_

Environment
xml

e

A single distribution file: ...\phoenix-4.0.3\dist\apps\myA pplication.sar



IDeploying Phoenix Application

B Cold deployment:

— Drop your application’s “sar” file mto the
Server's apps/ directory.

— Restart Phoenix application server.
B Hot deployment:
— None!

— Since Phoenix development has been halted,
don’t expect this to be done soon, if ever.

52



Administermg Phoenix: Application

B Starting and stopping Phoenix server:
— Windows: mvoke distrDir\bin\rur. bar to start-up.
— Windows: Crri-C for shutdown
— Unix: invoke distrDir/bin/run.sh to start-up.
— Unix: invoke distrDir/bin/phoenix.sh start(or: stop).
— All: un-deploy all Phoenix applications to stop.

— Use Java Service Wrapper to:
» Install Phoenix as an NT service.
» Restart application if crashed or frozen.

B Take advantage of the JMX.

— Create an MBean interface (use WebServerMBean).
— Implement WebServerMBean interface in your Block.
— Connect to http://localhost:8082. >



Pheenmx IDevelopment Sumimary,

B [Use Avalon components 1o yourlow-level logic:

— Select and/or create new components for your application. )
— Add Service- and/or component Manager only when needed.

— Create roles file if Role Manager used (“my Comp.roles™). >

Optional

— Create component’s configuration file (“myComp.xcont™).

— Jar each component and its associates in a separate file. )

B Expose high-level logic through Blocks/Services:

— Create new wrapper-Blocks around existing components.

— Add Blocks with their own business logic with/without components.
— Create “config.xml”, “as sembly.xml” and “en vironment.xml™ files.
— Use BlokContext for pushing data down from your Containers.

— Jar each application Block and its associates in a separate file.

Continued on the next page: 54



Pheenmx IDevelopment Sumimary,

B Add Applicationlistener object when necessary:

— (Create listener class implementing ApplicationlListener mtenface.
— Update your application coniiguration files.

— Note: use it 1ft your application requires high-level event notification.

B [ your project’s schedule permits;, add JMX:

— Update your application configuration files.

— Some coding efforts are necessary: new MBean, etc.

B Create a single sar file for all Components & Blocks.

B Deploy the sar file into the Phoenix application server.

55



Merlin: 2—Minute Intre

B Next generation contaimer, a.k.a. Service
Management Platiorm.
B Replaces Phoenix.

— Most Phoenix applications will run on Merlin.

B Major features:
— Composite Component Management.
— Automated Assembly.
— Lifestyle Management.
— Life Cycle Management.

56



Merlin vs. Phioenix

B Provides simpler envinonment coniiguration:
— One configuration file, as opposed to three.
— Better suited for embedded senvers/applications.

B Supports remote service dependencies.

m Well supported by developers and user groups.

— (leaner and well-maintained web documentation.

B Currently under heavy development:
— Still moving-target development environment.
— Includes too many unstable/under development features.

— Somewhat ‘stable’ version released at the end of 2003.

57



Avalon: Best Practices

B Dynamic class loading;
— Use “this.getClass().getClassloadern().loadClass(String)™ ...

— ... instead of “Class.forName(String).newlnstance()”.

B [Use “static” and singletons with caution:

— They cause unpredictable behavior within multiple class loaders.

B Organize loggers using areas ol concern:

— Avoid class-based approach as it may be too fine-grained.
— Implement “LLogEnabled” interface.
B Componentize concepts but write serviceable

solutions:
— Apply top-down system’s architecture design methodology.

— Divide your system along the business lines. 58



Avalon Advantages

B Reasonably solid application framework:

— EXxercised and proven by a number of production releases.

B [recly available source code.

— One can do his own bug fixes and improvements.

— Can be used in place of missing documentation.

B User groups and project developers can be valuable
source of information & support.

B Free access to the utilities and third-party
components that are ready to use.

— ... well, if you can ever match their dependencies. ©

— Watch for “to do” syndrome on Cornerstone utilities!!
59



Avalon IDisadvaniages

B Siill peonly documented application iramewornk:

— [Documentation is oiten outdated, 1 ever existing.
— Documents may occasionally be contradictory to each other.

— Missing product’s big-picture: architecture diagrams, etc.

B Missing production-level software features:

— Clustering, fail-over & load balancing not even started.

B One ends-up working with a moving target.

B Diificult to make implementation examples working
with the correct release version(s).

B Frequently changing Avalon APIs.

60



61



