

Cocoon Blocks

Daniel Fagerström
danielf@nada.kth.se

Same talk as last year?

• Changed architecture 3 times since last time
and rewritten the implementation a couple of
times

• The latest incarnation is based on the Spring
framework and the servlet set of APIs

• What I will describe is now part of Cocoon
2.2

Motivation

• Plugin architecture
• Webapp reuse
• Isolated internals in the blocks
• Simplify using Cocoon together with other

Servlet frameworks

Overview

• The big picture
• Architecture

– Focus on the webapp reuse part
– Examples

• Current state and next steps

Blocks
• A plugin architecture is needed
• Designed by Stefano and the rest of the

community 4+ years ago
• Compile time blocks for a few years, but no

external contracts
• Several prototypes the last 1.5 years
• Essentially back compatible, a new integration

level: package and reuse applications

What is a block?

• A packaged application (or part) containing:
– Libraries and resources
– Components
– Webapp functionality

• Configurable at deploy time
• Might depend on other blocks
• Isolated internals (only partly in 2.2)

What is a Block?

Classes,resources

Components

Servlets
Exported

components
Used

components

Deployment architecture

Cocoon platform

Blocks

Blocks
repository
(Maven 2)

Blocks
discovery

Deployment service

Block Architecture

• Built upon Spring and Maven
• A block is a Maven module

– Packaging format
– Components
– Servlet(s)
– Resources
– Libraries

Block structure
myblock/
 META-INF/
 legacy/
 components.xconf # Avalon conf
 properties/
 component.properties
 spring/
 components.xml # Spring conf (incl block servlet)
 COB-INF/ # webapp resources
 sitemap.xmap # block sitemap
 resources/
 ...
 org/apache/cocoon/myblock/ # classes
 foo.class
 ...

Components in blocks

• Exported to and managed in a global Spring
container

• Now the component configurations are
copied from the blocks to the global Spring
configuration by cocoon:deploy

• Reading the configuration from the block
would be preferable

Webapps in blocks

• As usual
• Spring managed Servlets
• Adds

– Call servlets (sitemaps) in connected blocks
– Use block deploy time attributes
– Extend blocks (with polymorphism)

Block architecture

Dispatcher
Servlet

Block
Servlets

/editor

/

Configured in web.xml

Spring
container

Based on the Servlet API

• No new API
• The BlockServlet is a Spring managed

Servlet that sets up a minimal Servlet
container for an embeded Servlet (e.g.
SitemapServlet)

• Block properties --> Servlet init params
• Block connections --> named dispatchers
• Can be used with any servlet, nothing

Cocoon specific

Wiring
blog

editor:

myeditor

myblog
super:

cmsURL: http://mycms.com/...

Uses

Extends

mountPath: /blog/danielf/

BlockServlet configuration
<beans xmlns="http://www.springframework.org/schema/beans">
 <bean id="org.apache.cocoon.blocks.blog"
 class="org.apache.cocoon.blocks.BlockServlet">
 <property name="mountPath" value="/test1"/>

 <property name="blockServletClass"
 value="org.apache.cocoon.sitemap.SitemapServlet"/>

 <property name="properties">
 <map>
 <entry key="cmsURL" value="http://mycms.com/test"/>
 </map>
 </property>

 <property name="connections">
 <map>
 <entry key="editor"
 value-ref="org.apache.cocoon.blocks.editor"/>
 </map>
 </property>
 </bean>
</beans>

http://www.springframework.org/schema/beans

Deployment configuration
blog.properties
configure the blog block
org.apache.cocoon.blog.properties.cmsURL=

http://mycvs.com/danielf
org.apache.cocoon.blog.connections.editor=

com.mycms.myeditor

configure my extended version
com.mycms.myblog.mountPath=

/blog/danielf
com.mycms.myblog.connections.super=

org.apache.cocoon.blog

http://mycvs.com/danielf

Block protocol

block:/foo.xml
– root sitemap in current block

block:./bar.xml
– current sitemap in current block (not yet)

block:editor:/foo.xml
– root sitemap in editor block

block:super:/foo.xml
– root sitemap in extended block

Block properties, paths

{block-property:cmsURL}
- Block property in sitemap (input module)

{cmsURL}
- Block property in component configuration

{block-path:myblog:/start}
--> /blog/danielf/start
- “Absolutizes” block protocol URIs to mounted
URIs, used in link transformer

Sitemap polymorphism
blog

myblog
Extends

“skin.xsl”

“skin.xsl” 
 read “skin.xsl”

Empty

Sitemap polymorphism
blog

myblog
Extends

“skin.xsl”

“skin.xsl” 
 read “skin.xsl”

Override
“skin.xsl” 
 read “myskin.xsl”

Sitemap polymorphism
blog

myblog
Extends

“start.xml”

“skin.xsl” 
 read “skin.xsl”
“*.xml” 
 generate “{1}”
 transform
 “block:/skin.xsl”
 serialize

“skin.xsl” 
 read “myskin.xsl”

Scenario

• Download blog block
• Deploy with parameters (or use default)

– Test
• Create empty extension (Maven archetype)

– Test
• Override some default or example rule

– Test
• …

Summary

Blocks gives us:
• Binary application packages

– Classes & resources
– Components
– Webapp functionality

• Parameterizable applications
• Reusability by extension
• Dependency handling between applications

Current state

• Implementation in Cocoon 2.2
• Stabilize it, use it for the samples

Next steps

• 3.0
– OSGi based
– Uses ”official” Spring-OSGI bridge
– class loader isolation
– partial hot plugablillity

