

Understanding MapReduce
with Hadoop

Tom White

The Problem
● Existing tools are struggling to process today's

large datasets
● How long to grep 1TB of log files?
● How long to update a 1TB database?
● Why is this a problem for me?

The Solution
● Parallelism
● Transfer, don't seek
● Alternatives:

– In memory DBs
– Streaming DBs

MapReduce
● Sort/merge is the primitive

– Operates at transfer rate
● Batch-oriented

– Not for online access
● Ad hoc queries

– No schema
● Distribution handled by the framework
● Simple model: key/value pairs

History of MapReduce and Hadoop
● Feb 2003 – First MapReduce library written at Google
● Dec 2004 – Google paper published
● July 2005 – Doug Cutting reports that Nutch now uses new

MapReduce implementation
● Jan 2006 – Doug Cutting joins Yahoo!
● Feb 2006 – Hadoop code moves out of Nutch into new

Lucene subproject
● Apr 2007 – Yahoo! running Hadoop on 1000-node cluster
● Jan 2008 – Hadoop made an Apache Top Level Project
● Feb 2008 – Yahoo! generate production search index with

Hadoop

What's in Hadoop?
● Hadoop is more than MapReduce

– Hadoop Distributed File System
– MapReduce
– Pig – high-level language for data analysis
– HBase – storage for semi-structured data

My First MapReduce Program
● General form:

– Map: (K1, V1) ➝ list(K2, V2)
– Reduce: (K2, list(V2)) ➝ list(K3, V3)

● grep
– Map: (offset, line) [(match, 1)]➝

– Reduce: (match, [1, 1, ...]) [(match, n)]➝

Logical Flow

Physical Flow

Architecture
● Single Job Tracker

– accepts job submission
– divides job into map and reduce tasks
– parcels out tasks to trackers
– reschedules failed tasks

● Many Task Trackers
– run tasks in child VMs
– inform Job Tracker of progress

Code
 public void map(LongWritable key, Text val,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {

 if (pattern.matcher(val.toString()).matches()) {
 output.collect(val, new IntWritable(1));
 }
 }

 public void reduce(Text key, Iterator<IntWritable> vals,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {

 int sum = 0;
 while (vals.hasNext()) {
 sum += vals.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }

Input and Output
● InputFormat produces splits and records
● OutputFormat accepts records
● Example formats

– TextInputFormat/OutputFormat
– KeyValueTextInputFormat
– SequenceFileInputFormat/OutputFormat

● Types are Hadoop Writables or other
serialization format

Other Features
● Compression
● Counters
● Partitioner
● DistributedCache
● Aggregation Library
● Data Join Library

More examples
● Sort

– Map: (k, v) [(k, v)]➝

– Reduce: (k, [v1, v2, ...]) [(k, v1), (k, v2), ...]➝

● Word Count
– Map: (offset, line) [(word1, 1), (word2, 1), ...➝]
– Reduce:(word, [1, 1, ...]) [(word, n)]➝

Your Turn
● Choose a partner to work with on one of the

problems on the handout.
● Express your solution as a MapReduce

program on paper.
● Demonstrate how your program works with a

small set of input data.

Problems

1.Find the hits by 5 minute timeslot for a website given
its access logs.

2.Find the pages with over 1 million hits in day for a
website given its access logs.

3.Find the pages that link to each page in a collection of
webpages.

4.Calculate the proportion of lines that match a given
regular expression for a collection of documents.

5.Sort tabular data by a primary and secondary column.
6.Find the most popular pages for a website given its

access logs.

