тΜ

Deploying Grid Services Using Hadoop

Allen Wittenauer

April 11, 2008

- Grid Computing At Yahoo!
- Quick Overview of Hadoop
 - "Hadoop for Systems Administrators"
- Scaling Hadoop Deployments
- Yahoo!'s Next Generation Grid Infrastructure
- Questions (and maybe even Answers!)

• Drivers

- 500M unique users per month
- Billions of interesting events per day
- "Data analysis is the inner-loop at Yahoo!"
- Yahoo! Grid Vision and Focus
 - On-demand, shared access to vast pool of resources
 - Support for massively parallel execution (1000s of processors)
 - Data Intensive Super Computing (DISC)
 - Centrally provisioned and managed
 - Service-oriented, elastic

What We're Not

- Not "Grid" in the sense of scientific community (Globus, etc)
- Not focused on public or 3rd-party utility (Amazon EC2/S3, etc)

- Operate multiple grids within Yahoo!
- 10,000s nodes, 100,000s cores, TBs RAM, PBs disk
- Support large internal user community
 - Account management, training, etc
- Manage data needs
 - Ingest TBs per day
- Deploy and manage software (Hadoop, Pig, etc)

- What we really do is utility computing
 - Nobody knows what "utility computing" is, but everyone has heard of "grid computing"
 - Grid computing implies sharing across resources owned by multiple, independent organizations
 - Utility computing implies sharing one owner's resources by multiple, independent customers
- Ultimate goal is to provide shared compute and storage resources
 - Instead of going to a hardware committee to provision balkanized resources, a project allocates a part of its budget for use on Yahoo!'s shared grids
 - Pay as you go
 - Only buy 100 computers for 15 minutes of compute time vs. 100 computers 24x7

- Thousands of machines using basic network hardware
 - It's hard to program for many machines
- Clustering and sharing software
 - Hadoop, HOD, Torque, Maui, and other bits...
- Petabytes of data
 - It's an engineering challenge to load so much data from many sources
- Attached development environment
 - A clean, well lit place to interact with a grid
- User support
 - Learning facilitation
- Usage tracking and billing
 - Someone has to pay the bills...

- Application writer specifies
 - two functions: Map and Reduce
 - set of input files
- Workflow
 - input phase generates a number of FileSplits from input files (one per Map Task)
 - Map phase executes user function to transform key/value inputs into new key/value outputs
 - Framework sorts and shuffles
 - Reduce phase combines all k/v's with the same key into new k/v's
 - Output phase writes the resulting pairs to files
 - cat * | grep | sort | uniq -c | cat > out

- Job
 - Map Function + Reduce Function + List of inputs

- Provided for two main purposes
 - Meaningful development interaction with a compute cluster
 - High bandwidth, low latency, and few network barriers enable a tight development loop when creating MapReduce jobs
 - Permission and privilege separation
 - Limit exposure to sensitive data
 - Hadoop 0.15 and lower lack users, permissions, etc.
 - Hadoop 0.16 has users and "weak" permissions
- Characteristics
 - "Replacement" Lab machine
 - World-writable local disk space
 - Any single-threaded processing
 - Code debugging

- Compute Cluster Node
 - Users cannot login!
 - All nodes run both MapReduce and HDFS frameworks
 - usually 500 to 2000 machines
 - Each cluster kept relatively homogenous
 - Hardware configuration
 - 2xSockets (2 or 4 core)
 - 4x500-750G
 - 6G-8G RAM

 Name
 Task

 Node
 Data Node

- Name Node
 - 16G RAM
 - 14G Java heap = 18-20 million files

- Hadoop does not have an advanced scheduling system
 - MapReduce JobTracker manages one or more jobs running within a set of machines
 - Works well for "dedicated" applications, but does not work so well for shared resources
- Grid Services are intended to be a shared multi-user, multi-application environment
 - Need to combine Hadoop with an external queuing and scheduling system...

- Wrapper around PBS commands
 - We use freely available Torque and Maui
- Big win: virtual private JobTracker clusters
 - Job isolation
 - Users create clusters of the size they need
 - Submit jobs to their private JT
- Big costs:
 - Lose data locality
 - Increased complexity
 - Lose a node for private JobTracker
 - Single reducer doesn't free unused nodes
 - ~ 30% efficiency lost!
- Looking at changing Hadoop scheduling
 - Task scheduling flexibility combined with node elasticity

Yahoo!'s Next Generation Grid Infrastructure A Work In Progress

- Internal deployments
 - Mostly Yahoo! proprietary technologies
- M45
 - Educational outreach grid
 - Non-Yahoo!'s using Yahoo! resources
 - Legal required us not to use **any** Y! technology!
- Decision made to start from scratch!
 - Hard to share best practices
 - Potential legal issues
 - Don't want to support two ways to do the same operation
- Internal grids converting to be completely OSS as possible
 - Custom glue code to deal with any Y!<-->OSS incompatibilities
 - user and group data

- Naming services
 - Kerberos for secure authentication
 - DNS for host resolution
 - LDAP for everything else
- ISC DHCP
 - Reads table information from LDAP
 - In pairs for redundancy
- Kickstart
 - We run RHEL 5.x
 - base image + bcfg2
- bcfg2
 - host customization
 - centralized configuration management

- NFS
 - Home Directories
 - Project Directories
 - Group shared data
- Grids with service level agreements (SLAs) shouldn't use NFS !
 - Single point of failure
 - HA-NFS == \$\$\$
 - Performance
 - Real data should be in HDFS

- Torque
 - Use the Torque node health mechanism to disable/fix 'sick' nodes
 - Great reduction in amount of support issues
 - Address problems in bulk
- Nagios
 - Usual stuff
 - Custom hooks into Torque
- Simon
 - Yahoo!'s distributed cluster and application monitoring tools
 - Similar to Ganglia
 - On the roadmap to be open sourced

- Range: group of hosts
 - example: @GRID == all grid hosts
 - custom tools to manipulate hosts based upon ranges:
 - ssh -r @GRID uptime
 - Report uptime on all of the hosts in @GRID
- Netgroup
 - Used to implement ranges
 - The most underrated naming service switch ever?
 - Cascaded!
 - Scalable!
 - Supported in lots of useful places!
 - PAM (e.g., _succeed_if on Linux)
 - NFS

- Apache Hadoop
 - http://hadoop.apache.org/
- Yahoo! Hadoop Blog
 - http://developer.yahoo.com/blogs/hadoop/
- M45 Press Release
 - http://research.yahoo.com/node/1879
- Hadoop Summit and DISC Slides
 - http://research.yahoo.com/node/2104

