## Meet Hadoop

#### Doug Cutting & Eric Baldeschwieler Yahoo!

OSCON, Portland, OR, USA 25 July 2007

#### desiderata

- operate scalably
  - petabytes of data
  - larger than RAM, disk i/o required
- operate economically
  - minimize \$ per cycle, ram, & i/o
  - thus use network of commodity PCs
- operate reliably

#### problem: seeks are expensive

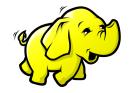
- CPU & transfer speed, RAM & disk size
  double every 18-24 months
- seek time nearly constant (~5%/year)
- time to read entire drive is growing
- moral:

- scalable computing **must** go at transfer rate

two database paradigms: seek versus transfer

• B-Tree (Relational Dbs)

operate at seek rate – log(N) seeks/access


- sort/merge flat files (Lucene, MapReduce)
  operate at transfer rate log(N) transfers/sort
- caveats:
  - sort & merge is batch based
    - although possible to work around
  - other paradigms (memory, streaming, etc.)

### example: updating a terabyte DB

- given:
  - 10MB/s transfer
  - 10ms/seek
  - 100B/entry (10B entries)
  - 10kB/page (1B pages)
- updating 1% of entries (100M) takes:
  - 1000 days with random B-Tree updates
  - 100 days with batched B-Tree updates
  - 1 day with sort & merge

### problem: scaling reliably is hard

- need to process 100TB datasets
- on 1 node:
  - scanning @ 50MB/s = 23 days
  - MTBF = 3 years
- on 1000 node cluster:
  - scanning @ 50MB/s = 33 min
  - MTBF = 1 day
- need framework for distribution
   efficient, reliable, easy to use



#### MapReduce: sort/merge based distributed computing

- best for batch-oriented, offline
- naturally supports ad-hoc queries
- sort/merge is primitive
  - operates at transfer rate
- simple programming metaphor:
  - input | map | shuffle | reduce > output
  - cat \* | grep | sort | uniq -c > file
- distribution & reliability
  - handled by framework

# comparison of current scalable database strategies

HBase/ partitioned **MapReduce RDBMS BigTable** -offline access: +online +online distribution:-custom +native +native partitioning:-static +dynamic +dynamic updates:-slower +faster +fastest +dynamic schema:-static -static joins:-slow/hard -slow/hard +fast/easy

## Hadoop

- Apache project
- includes:
  - HDFS a distributed filesystem
  - MapReduce offline computing engine
  - HBase (pre-alpha) online data access
- Y! is biggest contributor
- still pre-1.0 release

- but already used by many

#### over to Eric...