
Troubleshooting and Diagnostics
Permalink to this page: https://cwiki.apache.org/confluence/x/yColBg

Troubleshooting and Diagnostics techniques.

Table of Contents

Techniques & Reference
Tools

JMX Clients
JDK tools
Profilers & Heap Analyzers

Notes on using JMX clients
Common Troubleshooting Scenario
Troubleshooting unexpected Response state problems
Troubleshooting "Too many open file descriptors"

Techniques & Reference

How To: Capture a thread dump
How To: Capture a heap dump
How To: Examine a Stacktrace
How To: Configure Tomcat for debugging
FAQ: Developing
FAQ: Memory
Tomcat Memory Leak Protection
Notes on using JMX clients

Tools

JMX Clients

JJConsole: Documentation
VisualVM: , Documentation Project

JDK tools

jinfo - Prints JVM process info
jstack - Prints thread stack traces
jmap - Dumps heap and shows heap status
jhat - Heap Analyzer Tool
jcmd - Multitool intended to replace the above JDK tools

Profilers & Heap Analyzers

Eclipse Memory Analyzer (MAT)
YourKit Profiler
VisualVM Docs

Notes on using JMX clients

When running a JMX client (JConsole, VisualVM) on the same machine as the target JVM process it is possible to connect without pre-configuring a JMX
port, using the local connector stub. This method relies on being able to create a protected temporary file, accessible only to a user with administrator
privileges. Java processes which are accessible via the local connector will automatically appear in the client.

NB(1) On Windows, this means that the temporary directory must be located on an NTFS formatted disk. See the following link for more details.

NB(2) On Windows, if Tomcat is started using a service wrapper, this will prevent JConsole & VisualVM from using the local JMX connector stub.

Java 5 JConsole and Remote Management FAQ

From Java 6 onward a process does not need to have the management agent enabled when it starts, as the Attach API permits the management agent to
be activated on demand.

Common Troubleshooting Scenario

https://cwiki.apache.org/confluence/x/yColBg
https://cwiki.apache.org/confluence/display/TOMCAT/HowTo#HowTo-How_do_I_obtain_a_thread_dump_of_my_running_webapp_.3F
https://cwiki.apache.org/confluence/display/TOMCAT/HowTo#HowTo-How_do_I_obtain_a_heap_dump.3F
https://cwiki.apache.org/confluence/display/TOMCAT/HowTo#HowTo-How_do_I_read_a_stack_trace.3F
https://cwiki.apache.org/confluence/display/TOMCAT/HowTo#HowTo-How_do_I_debug_a_Tomcat_application.3F
https://cwiki.apache.org/confluence/display/TOMCAT/Developing
https://cwiki.apache.org/confluence/display/TOMCAT/Memory
https://cwiki.apache.org/confluence/display/TOMCAT/MemoryLeakProtection
https://download.oracle.com/javase/6/docs/technotes/tools/share/jconsole.html
https://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html
http://visualvm.dev.java.net
https://download.oracle.com/javase/6/docs/technotes/tools/share/jinfo.html
https://download.oracle.com/javase/6/docs/technotes/tools/share/jstack.html
https://download.oracle.com/javase/6/docs/technotes/tools/share/jmap.html
https://download.oracle.com/javase/6/docs/technotes/tools/share/jhat.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jcmd.html
https://www.eclipse.org/mat/
https://www.yourkit.com/
https://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html
https://docs.oracle.com/javase/1.5.0/docs/guide/management/faq.html

1.
a.
b.

2.
a.

3.
a.

4.
a.
b.

i.

ii.
iii.

1.

1.

2.

If you , there are no error messages, and you just want to find out what is going on, you may try the followinghave already looked into Tomcat logs

Look into (the log file generated by). Tomcat access log AccessLogValve
If your request is not listed there, then it has not been processed by Tomcat. You need to look elsewhere (e.g. at your firewall).
You will see what IP address your client is using, and whether it is using an IPv4 () or IPv6 address ().127.0.0.1 0:0:0:0:0:0:0:1
Modern operating systems can use IPv6 addresses for localhost / local network access, while external network is still using IPv4.

Take a thread dump. This way you will find out what Tomcat is actually doing.
If you are troubleshooting some process that takes noticeable time, take (three) thread dumps with some interval between them. several
This way you will see if there are any changes, any progress.

Try .debugging
A good place for a breakpoint is method. That is the entry point org.apache.catalina.connector.CoyoteAdapter.service()
from Tomcat connectors and into the Servlet engine. At that place your request has already been received and its processing starts.

If you did a long-awaited upgrade, jumping over several years worth of Tomcat releases, and something broke, and you have no clue,
Reading may help.Migration guides
It may help to do a (aka) to locate the version of Tomcat that triggered the change. If your issue is easy to binary search bisecting
reproduce, it may be pretty fast. Just 7-8 tries may cover a range of 100 versions. Once you know the version and its release date, the
following resources are available:

The release announcement.
See " " link at the bottom of the front page of the . former announcements Apache Tomcat site
An announcement mail message can also be found in the archives of the "announce@" .mailing list
The changelog. A release announcement usually has a link to it.
Archives of the "users@" . You may look for discussions that happened a month or two after the release.mailing list

Troubleshooting unexpected Response state problems

If you encounter problems that manifest themselves as accessing a request or response that is an inconsistent state, the main suspect is your own web
 (or a library that it uses) keeping a reference to Request or Response objects outside of their life cycle. Examples: , .application BZ 61289 BZ 58457

The lifetime of the Response object is documented in the . Quoting from section "5.8 Lifetime of the Response Object" of Servlet 4.0 Servlet specification
specification:

"Each response object is valid only within the scope of a servlet’s service method, or within the scope of a filter’s doFilter method, unless the
associated request object has asynchronous processing enabled for the component. If asynchronous processing on the associated request is
started, then the response object remains valid until complete method on AsyncContext is called."

In case of asynchronous processing, when an error occurs Tomcat notifies all registered s and then calls automatically if AsyncListener complete()
none of the listeners have called it yet. (Reference:) 61768

Also see sections "2.3.3.4 Thread Safety" and "3.13 Lifetime of the Request Object" of the same specification.

To troubleshoot the issue:

Make sure that your Tomcat is configured to discard facades to its internal objects when request processing completes. This makes it easier to
spot illegal access when it happens, instead of waiting until side effects of such access become visible. Essentially, it protects Tomcat internals
from misbehaving web applications.

This feature is always on when you are running Tomcat with a . Starting with Tomcat 10.0 this feature is Java Security Manager being enabled
enabled by default. It is by default in earlier versions of Tomcat. The way this feature is configured differs between versions: it is disabled
controlled by an attribute on element or by a .Connector system property

If you are running Tomcat 9.0 or earlier, do both of the following:

- Set the following in Tomcat configuration: system property
org.apache.catalina.connector.RECYCLE_FACADES=true

- Add the following attribute to all elements:Connector
="true"discardFacades

The Connector attribute was added in Tomcat 10.0.0-M1, 9.0.31, 8.5.51 and 7.0.100. The system property is an older way to configure this
feature. In case of a doubt, or if you are switching back and forth between versions while troubleshooting the issue, it is safer to configure both of
them.

This feature is also mentioned on the page in Tomcat documentation. You can also search the archives of the Tomcat Security Considerations
users' for previous discussions mentioning the RECYCLE_FACADES flag.mailing lists

Accessing response objects after their lifetime can lead to security issues in your application, such as sending responses to wrong clients, mixing up
responses. If you can reproduce the issue and the above diagnostic does not show your own bug, but a bug in Apache Tomcat, if the problem manifests
as a security issue, see .how to report it

There are some known examples of broken libraries / APIs:

Read about issue — an issue with API. It may have already been fixed as it is an old issue, but there are Java ImageIO javax.imageio.ImageIO
no clear records of it.
Read about an a library that is used to generate PDF files, — fixed in their version 3.8.0, earlier versions may be affected.issue in PD4ML,

Troubleshooting "Too many open file descriptors"

https://cwiki.apache.org/confluence/display/TOMCAT/HowTo#HowTo-HowdoIlogrequests?
https://cwiki.apache.org/confluence/display/TOMCAT/AccessLogValve
https://cwiki.apache.org/confluence/display/TOMCAT/HowTo#HowTo-HowdoIobtainathreaddumpofmyrunningwebapp?
https://cwiki.apache.org/confluence/display/TOMCAT/Developing#Developing-Debugging
https://tomcat.apache.org/migration.html
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Bisection_(software_engineering)
https://tomcat.apache.org/oldnews.html
https://tomcat.apache.org/
https://tomcat.apache.org/lists.html#tomcat-announce
https://tomcat.apache.org/lists.html#tomcat-users
https://bz.apache.org/bugzilla/show_bug.cgi?id=61289
https://bz.apache.org/bugzilla/show_bug.cgi?id=58457
https://cwiki.apache.org/confluence/display/TOMCAT/Specifications
https://bz.apache.org/bugzilla/show_bug.cgi?id=61768#c3
https://tomcat.apache.org/tomcat-9.0-doc/security-manager-howto.html
https://tomcat.apache.org/tomcat-10.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/systemprops.html#Security
https://tomcat.apache.org/tomcat-9.0-doc/config/systemprops.html#Security
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/security-howto.html#System_Properties
https://tomcat.apache.org/lists.html
https://tomcat.apache.org/security.html
https://cwiki.apache.org/confluence/display/TOMCAT/KnownIssues#KnownIssues-ImageIOIssues
https://doc.bccnsoft.com/docs/jdk11-docs/api/java.desktop/javax/imageio/ImageIO.html
https://cwiki.apache.org/confluence/display/TOMCAT/KnownIssues#KnownIssues-PD4ML

The code that opens the descriptors can be identified using a tool such as http://file-leak-detector.kohsuke.org/

http://file-leak-detector.kohsuke.org/

	Troubleshooting and Diagnostics

