
1.

HowTo FasterStartUp
How do I make Tomcat startup faster?

How do I make Tomcat startup faster?
General
JAR scanning

Configure your web application
Remove unnecessary JARs
Exclude JARs from scanning
Disable WebSocket support

Entropy Source
Starting several web applications in parallel
Other

Memory
Config
Web application

This section provides several recommendations on how to make your web application and Apache Tomcat as a whole to start up faster.

General

Before we continue to specific tips and tricks, the general advice is that if Tomcat hangs or is not responsive, you have to perform diagnostics. That is to ta
 to see what Tomcat is really doing. See page for details.ke several thread dumps Troubleshooting and Diagnostics

JAR scanning

The (chapter 8) introduced support for several "plugability features". Those exist to simplify a structure of a web application and to Servlet 3.0 specification
simplify plugging of additional frameworks. Unfortunately, these features require scanning of JAR and class files, which may take noticeable time.
Conformance to the specification requires that the scanning were performed by default, but you can configure your own web application in several ways to
avoid it (see below). It is also possible to configure which JARs Tomcat should skip.

For further talk, the features that require scanning are:

Introduced by Servlet 3.0:

SCI ()javax.servlet.ServletContainerInitializer
Web fragments ()META-INF/web-fragment.xml
Resources of a web application bundled in jar files ()META-INF/resources/*
Annotations that define components of a web application (etc.)@WebServlet
Annotations that define components for 3-rd party libraries initialized by an SCI (arbitrary annotations that are defined in @HandlesTypes
annotation on a SCI class)

Older features, introduced by earlier specifications:

TLD scanning, (Discovery of tag libraries. Scans for Tag Library Descriptor files,). META-INF/**/*.tld

Among the scans the annotation scanning is the slowest. That is because each class file (except ones in ignored JARs) has to be read and parsed looking
for annotations in it.

An example of a container-provided SCI that triggers annotation scanning is the API implementation which is included with standard WebSocket
distribution in all versions of Tomcat 8 and with Tomcat 7 starting with 7.0.47. An SCI class declared there triggers scanning for endpoints (the WebSocket
classes annotated with or implementing interface or extending the abstract class). If you @ServerEndpoint ServerApplicationConfig Endpoint
do not need support for , you may remove the API and implementation JARs from Tomcat (WebSockets WebSocket WebSocket websocket-api.jar
and or).tomcat7-websocket.jar tomcat-websocket.jar

A note on TLD scanning: In Tomcat 7 and earlier the TLD scanning happens twice,

first, at startup time, to discover listeners declared in tld files (done by class),TldConfig
second, by JSP engine when generating java code for a JSP page (done by). TldLocationsCache

The second scanning is more noticeable, because it prints a diagnostic message about scanned JARs that contained no TLDs. In Tomcat 8 the TLD
scanning happens only once at startup time (in).JasperInitializer

Configure your web application

See chapter in .Tomcat 7 migration guide

There are two options that can be specified in your file:WEB-INF/web.xml

Set attribute on the element. 2. Add an empty element. metadata-complete="true" <web-app> <absolute-ordering />

#
https://cwiki.apache.org/confluence/display/TOMCAT/Specifications
#
#
#
#
#
http://tomcat.apache.org/migration-7.html#Annotation_scanning

Setting disables scanning your web application and its libraries for classes that use annotations to define components of metadata-complete="true"
a web application (Servlets etc.). The option is not enough to disable all of annotation scanning. If there is a SCI with a metadata-complete @HandlesT

 annotation, Tomcat has to scan your application for classes that use annotations or interfaces specified in that annotation.ypes

The element specifies which web fragment JARs (according to the names in their files) have to <absolute-ordering> WEB-INF/web-fragment.xml
be scanned for SCIs, fragments and annotations. An empty element configures that none are to be scanned.<absolute-ordering/>

In Tomcat 7 the option affects discovery both of SCIs provided by web application and ones provided by the container (i.e. by the absolute-ordering
libraries in). In Tomcat 8 the option affects the web application ones only, while the container-provided SCIs are always $CATALINA_HOME/lib
discovered, regardless of . In such case the option alone does not prevent scanning for annotations, but the absolute-ordering absolute-ordering
list of JARs to be scanned will be empty, and thus the scanning will complete quickly. The classes in are always scanned regardless WEB-INF/classes
of .absolute-ordering

Scanning for web application resources and TLD scanning are not affected by these options.

Remove unnecessary JARs

Remove any JAR files you do not need. When searching for classes every JAR file needs to be examined to find the needed class. If the jar file is not
there - there is nothing to search.

Note that a web application should never have its own copy of Servlet API or Tomcat classes. All those are provided by the container (Tomcat) and should
never be present in the web application. If you are using Apache Maven, such dependencies should be configured with . <scope>provided</scope>
See also a .stackoverflow page

Exclude JARs from scanning

In Tomcat 7 JAR files can be excluded from scanning by listing their names or name patterns in a . Those are usually configured in the system property con
 file.f/catalina.properties

In Tomcat 8 there are several options available. You can use a or configure a in the of your web system property <JarScanFilter> element context file
application.

Disable supportWebSocket

There exists an attribute on element, . It can be used to disable container-provided features that are plugged into Context containerSciFilter
Tomcat via SCI API: WebSocket support (in Tomcat 7 and later), JSP support (in Tomcat 8 and later).

The class names to filter can be detected by looking into files in Tomcat META-INF/services/javax.servlet.ServletContainerInitializer
JARs. For WebSocket support the name is , for JSP support the name is org.apache.tomcat.websocket.server.WsSci org.apache.jasper.

. e.g.:servlet.JasperInitializer

<Context containerSciFilter="WsSci" />

The impact of disabling WebSocket support will depend on how many JARs were being scanned for WebSocket annotations and whether any other SCIs
trigger annotation scans. Generally, it is the first SCI scan that has the biggest performance impact. The impact of additional scans is minimal.

References: , Bug 55855 Tomcat 8 Context documentation

Entropy Source

Tomcat 7+ heavily relies on SecureRandom class to provide random values for its session ids and in other places. Depending on your JRE it can cause
delays during startup if entropy source that is used to initialize SecureRandom is short of entropy. You will see warning in the logs when this happens, e.g.:

<DATE> org.apache.catalina.util.SessionIdGenerator createSecureRandom
INFO: Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [5172] milliseconds.

There is a way to configure JRE to use a non-blocking entropy source by setting the following system property: -Djava.security.egd=file:/dev/.
/urandom

Note the " " characters in the value. They are needed to work around known . See also . It is /./ Oracle JRE bug #6202721 JDK Enhancement Proposal 123
known that implementation of was improved in Java 8 onwards.SecureRandom

Also note that replacing the blocking entropy source (/dev/random) with a non-blocking one actually reduces security because you are getting less-random
data. If you have a problem generating entropy on your server (which is common), consider looking into entropy-generating hardware products such as
"EntropyKey".

Starting several web applications in parallel

http://stackoverflow.com/questions/1031695/how-to-exclude-jars-generated-by-maven-war-plugin
http://tomcat.apache.org/tomcat-7.0-doc/config/systemprops.html#JAR_Scanning
http://tomcat.apache.org/tomcat-8.0-doc/config/systemprops.html#JAR_Scanning
http://tomcat.apache.org/tomcat-8.0-doc/config/jar-scan-filter.html
http://tomcat.apache.org/tomcat-8.0-doc/config/context.html
#
https://bz.apache.org/bugzilla/show_bug.cgi?id=55855
http://tomcat.apache.org/tomcat-8.0-doc/config/context.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6202721
http://openjdk.java.net/jeps/123
#

1.

With Tomcat 7.0.23+ you can configure it to start several web applications in parallel. This is disabled by default but can be enabled by setting the startS
 attribute of a to a value greater than one.topThreads Host

Other

Memory

Tweak memory parameters - Google is your friend.

Config

Trim the config files as much as possible. XML parsing is not cheap. The less there is to parse - the faster things will go.

Web application

Remove any web applications that you do not need. (So remove the all the web applications installed with tomcat) 2. Make sure your code is not
doing slow things. (Use a profiler)

CategoryFAQ

#

	HowTo FasterStartUp

