BSPModel

® Overview
© BSP Function
® [nput and Output
O General Information
© Input
= Configuring Input
= Using Input
® Custom Inputformat
© Output
® Configuring Output
= Using Output
= Custom Outputformat

® Communication Model

® Synchronization

® Counters

® Setup and Cleanup

® Combiners

® |mplementation notes

© Internal implementation details

Overview

In Apache Hama, you can implement your own BSP method by extending from or g. apache. hama. bsp. BSP class. Apache Hama provides in this class
a user-defined function bsp() that can be used to write your own BSP program.

The bsp() function handles whole parallel part of the program. (So it just gets called once, not all over again)
There are also set up() and cl eanup() which will be called at the beginning of your computation, respectively at the end of the computation.
cl eanup() is guranteed to run after the computation or in case of failure. (In 0.4.0 it is actually not, we expect this to be fixed in 0.5.0).
You can simply override the functions you need from BSP class.
Basically, a BSP program consists of a sequence of supersteps. Each superstep consists of the three phases:
® Local computation
® Process communication
® Barrier synchronization
NOTE that these phases should be always sequential order.

In Apache Hama, the communication between tasks (or peers) is done within the barrier synchronization.

BSP Function

The "bsp()" function is a user-defined function that handles the whole parallel part of the program. It only takes one argument "BSPPeer", which contains
an communication, counters, and IO interfaces.

Input and Output

General Information

Since Hama 0.4.0 we provide a input and output system for BSP Jobs.

We choose the key/value model from Hadoop, since we want to provide a conherent API to widely used products like Hadoop MapReduce
(SequenceFiles) and HBase (Column-storage).

Input

Configuring Input

When setting up a BSPJob, you can provide a InputFormat and a Path where to find the input.

#
#

BSPJob j ob = new BSPJob();

// detail stuff omtted

j ob. setl nput Pat h(new Path("/tnp/test.seq");

j ob. set | nput For nat (or g. apache. hama. bsp. SequenceFi | el nput For mat . cl ass);

Another way to add input paths is following:

SequenceFi | el nput For mat . addl nput Pat h(j ob, new Path("/tnp/test.seq"));

You can also add multiple paths by using this method:

SequenceFi | el nput For nat . addl nput Pat hs(j ob, "/tnp/test.seq,/tnp/test2.seq,/tnp/test3.seq");

Note that these paths must be separated by a comma.

In case of a SequenceFi | el nput For nat the key and value pair are parsed from the header.

When you use want to read a basic textfile with Text | nput For mat the key is always LongW i t abl e which contains how much bytes have been read
and Text which contains a line of your input.

Using Input

You can now read the input from each of the functions in BSP class which has BSPPeer as parameter. (e.G. setup / bsp / cleanup)

In this case we read a normal text file:

@verride
public final void bsp(
BSPPeer <LongW it abl e, Text, KEYOUT, VALUEOUT, MESSAGE_TYPE> peer)
throws | OException, |nterruptedException, SyncException {

/1 this nethod reads the next key value record fromfile
KeyVal uePai r <LongW it abl e, Text> pair = peer.readNext();

/1 the following lines do the sane:
LongWitable key = new LongWitable();
Text value = new Text();

peer.readNext (key, value);

Consult the docs for more detail on events like end of file.
There is also a function which allows you to re-read the input from the beginning.

This snippet reads the input five times:

for(int i =0; i <5; i++){
LongWitabl e key = new LongWitable();
Text value = new Text();
whil e (peer.readNext (key, value)) {
/1 read everything
}
/'l reopens the input
peer . reopenl nput ()

You must not consume the whole input to reopen it.

Custom Inputformat

You can implement your own inputformat. It is similar to Hadoop MapReduce's input formats, so you can use existing literature to get into it.

#

Output

Configuring Output

Like the input, you can configure the output while setting up your BSPJob.

j ob. set Qut put KeyCd ass(Text. cl ass);
j ob. set Qut put Val ued ass(Doubl eWitabl e. cl ass);

j ob. set CQut put For mat (Text Qut put For mat . cl ass) ;

Fi | eQut put For mat . set Qut put Pat h(j ob, TMP_QUTPUT) ;

As you can see there are 3 major sections.
The first section is about setting the classes for output key and output value.

The second section is about setting the format of your output. In this case this is TextOutputFormat, it outputs key separated by tabstops (\t') from the
value. Each record (key+value) is separated by a newline (\n’).

The third and last section is about setting the path where your output should go. You can use the static method in your choosen Outputformat as well as
the convenience method in BSPJob:

j ob. set Qut put Pat h(new Pat h("/tnp/out"));

If you don't provide output, no output folder or collector will be allocated.

Using Output

From your BSP, you can output like this:

@verride

public void bsp(
BSPPeer <Nul | Witable, NullWitable, Text, DoubleWitable, DoubleWitable> peer)
throws | OException, SyncException, |nterruptedException {

peer.wite(new Text ("Esti mated value of Pl is"), new Doubl eWitable(3.14));

Note that you can always output, even from Setup or Cleanup methods!

Custom Outputformat

You can implement your own outputformat. It is similar to Hadoop MapReduce's output formats, so you can use existing literature to get into it.

Communication Model

Within the bsp() function, you can use the powerful communication functions for many purposes using BSPPeer. We tried to follow the standard library of
BSP world as much as possible. The following table describes all the functions you can use:

Function Description

send(String peerName, BSPMessage msg) = Send a message to another peer.

getCurrentMessage() Get a received message from the queue.
getNumCurrentMessages() Get the number of messages currently in the queue.
sync() Starts the barrier synchronization.

getPeerName() Get the peer name of this task.

getPeerName(int index) Gets the n-th peer name.

getNumPeers() Get the number of peers.

getAllPeerNames() Get all peer names (including "this" task). (Hint: These are always sorted in ascending order)

#
#

The send() and all the other functions are very flexible. Here is an example that sends a message to all peers:

@verride

public void bsp(
BSPPeer <Nul | Witable, NullWitable, Text, DoubleWitable, LongMessage> peer)
throws | OException, SyncException, InterruptedException {

for (String peerNane : peer.getAll PeerNanes()) {
peer . send(peer Nane,
new LongMessage("Hello from" + peer.getPeerNane(), SystemcurrentTimeMIlis()));

}

peer.sync();

}

Synchronization

When all the processes have entered the barrier via the sync() function, the Hama proceeds to the next superstep. In the previous example, the BSP job
will be finished by one synchronization after sending a message "Hello from ..." to all peers.

But, keep in mind that the sync() function is not the end of the BSP job. As was previously mentioned, all the communication functions are very flexible. For
example, the sync() function also can be called in a for loop so that you can use to program the iterative methods sequentially:

@verride

public void bsp(
BSPPeer <Nul | Witable, NullWitable, Text, DoubleWitable, Witable> peer)
throws | OException, SyncException, I|nterruptedException {

for (int i =0; i < 100; i++) {
/1 send some nessages
peer.sync();

}

The BSP job will be finished only when all processes have no more local and outgoing queues entries and all processes done or is killed by the user.

Counters

Just like in Hadoop MapReduce you can use Counters.

Counters are basically enums that you can only increment. You can use them to track meaningful metrics in your code, e.G. how often a loop has been
executed.

From your BSP code you can use counters like this:

/1 enum definition

enum LoopCount er{
LOOPS

}

@verride
public void bsp(
BSPPeer <Nul | Witable, NullWitable, Text, DoubleWitable, DoubleWitable> peer)
throws | OException, SyncException, I|nterruptedException {
for (int i =0; i <iterations; i++) {
/] details ommtted
peer . get Count er (LoopCount er. LOOPS) . i ncrenent (1L);
}

/] rest onmtted

#

Setup and Cleanup

Since 0.4.0 you can use Setup and Cleanup methods in your BSP code. They can be inherited from BSP class like this:

public class M/Estimator extends
BSP<Nul | Witable, NullWitable, Text, DoubleWitable, DoubleWitable> {

@verride
public void setup(
BSPPeer <Nul | Witable, NullWitable, Text, DoubleWitable, DoubleWitable> peer)
throws | OException {
/1 Setup: Choose one as a master
this. mast er Task = peer. get Peer Name(peer. get NunPeers() / 2);

}

@verride
public void cleanup(
BSPPeer <Nul | Witable, NullWitable, Text, DoubleWitable, DoubleWitable> peer)
throws | OException {
/1 your cleanup here

}

@verride
public void bsp(
BSPPeer <Nul | Witable, NullWitable, Text, DoubleWitable, DoubleWitable> peer)
throws | OException, SyncException, InterruptedException {
/1 your conputation here
}
}

Setup is called before bsp method, and cleanup is executed at the end after bsp. You can do everything in setup and cleanup: sync, send, increment

counters, write output or even read from the input.

Combiners

Combiners are used for performing message aggregation to reduce communication overhead in cases when messages can be summarized arithmetically
e.g., min, max, sum, and average at the sender side. Suppose that you want to send the integer messages to a specific processor from 0 to 1000 and sum

all received the integer messages from all processors.

public void bsp(BSPPeer<Nul | Witable, Null Witable, Null Witable, NullWitable, |ntegerMessage> peer)
throws | CExcepti on,
SyncException, |nterruptedException {

for (int i =0; i < 1000; i++) {
peer.send(nast er Task, new | nt eger Message(peer. get PeerName(), i));

}

peer.sync();

if (peer.getPeerNane().equal s(nmasterTask)) {
I nt eger Message recei ved;
while ((received = peer.getCurrentMessage()) !'= null) {
sum += received. getData();
}
}
}

If you follow the previous example, Each bsp processor will send a bundle of thousand Integer messages to a masterTask. Instead, you could use a
Combiners in your BSP program to perform a sum Integer messages and to write more concise and maintainable as below, that is why you use Combiners.

public static class SunConbi ner extends Conbiner {

@verride
publ i c BSPMessageBundl e conbi ne(lterabl e<BSPMessage> nessages) {

BSPMessageBundl e bundl e = new BSPMessageBundl e();
int sum= 0;

I terat or<BSPMessage> it = nessages.iterator();
while (it.hasNext()) {
sum += ((Integer Message) it.next()).getData();

}

bundl e. addMessage(new | nt eger Message(" Sunt', sun));
return bundl e;

Implementation notes

Internal implementation details

BSPJobClient

1. Create the splits for the job 2. writeNewSplits() 3. job.set("bsp.job.split.file", submitSplitFile.toString()); 4. Sets the number of peers to split.lenth
JobInProgress

1. Receives splitFile 2. Add split argument to TaskinProgress constructor
Task

1. Gets his split from Groom 2. Initializes everything in BSPPeerimpl

https://cwiki.apache.org/confluence/display/HAMA/JobInProgress
https://cwiki.apache.org/confluence/display/HAMA/TaskInProgress

	BSPModel

