OnlineCF
Online Collaborative Filtering

Contents

® Overview
® Usage
® Complementary functions

Overview.

® The problem of collaborative filtering is typically defined as the task of inferring consumer preferences: Given an observed set of product
preferences for a set of users, can we accurately predict the unobserved preferences?

® Notation. We define a collaborative filtering problem as a distribution D over triples (a, b, r) A x B x R where A and B are finite sets of size n and
m respectively. We are given a set M of triples {(a, b, r)} and want to find a function f (a, b) which minimizes the expected squared error

® Typically, we think of A as our set of users, B as our set of products, and r as user a’s “rating” of product b. In most movie recommendation
datasets, r is a number in {1, 2, 3, 4, 5} as in the number of “stars”, although in other settings we may only be given r {0, 1}, as in liked/disliked.

Usage.

Basic overview of usage steps are:

Convert. convert input data into OnlineCF compatible format.
Configuration and Train. set parameters for training

Load

Predict

Convert.

® Since, currently, we support one input path, we need to convert input data and combine set of triples, item and user features into one file. In order
to implement custom parsing of input data, use InputConverter class Below is example for Movie Lens dataset converter.

Movi eLensConverter converter = new Myvi eLensConverter();
converter.convert (pat hToPreferences, pathToMvieGenres, convertedQutputPath);

Configuration and Train.

® In order to achieve good performance in prediction we need to configure iteration count, matrix rank and matrix factorization update functions.

Onl i neCF recomender = new OnlineCF();

recomrender . set | nput Pr ef er ences(convert edQut put Pat h) ;

reconmrender . set | teration(150);

recommender . set Mat ri xRank(3);

recomrender . set Ski pCount (1); // after how many steps we shoul d synchronize values in each task
recomrender . set Updat eFunct i on(MeanAbsError. cl ass);

recomrender . set Qut put Pat h(out put Fi | eNane) ;

recomrender.train();

Load.

® After training, model will be saved into output file by default In order to use prediction functions we need to load it.

reconmmender . | oad(pat hToTr ai nedMbdel , fal se);

Predict.

#

// estimate score
doubl e estinmatedScore = recommender. esti mat ePreference(userld, itemd);

/] estimate user sinmlarities

doubl e userSimlarity = recommender. cal cul ateUserSinmilarity(userl, user2);

/] Pair<K, V> - where K predicted simlar user, V predicted sinilarity score

Li st <Pai r<Long, Doubl e>> sinilarUsers = recomender. get Most Si m | arUsers(userld, count);

// estimate itemsinmlarities

double itenSimlarity = reconmender.calculateltenSinmilarity(itenl, itenR);

/] Pair<K, V> - where K predicted simlar item V predicted sinilarity score

Li st <Pai r<Long, Doubl e>> sinilarltenms = recomrender.getMstSimlarltens(itenmd, count);

Complementary functions
® There some classes which can be useful to know while using Online Collaborative Filtering.

® InputConverter. For parsing input data and converting into OnlineCF compatible format. (see MovieLensConverter)
® OnlineUpdate.Function. For matrix factorization functions It will be used while training and estimating user preference (see MeanAbsError)

References

® Online Collaborative Filtering. Jacob Abernethy, Kevin Canini, John Langford, Alex Simma http://canini.me/research_files
/OnlineCollaborativeFiltering.pdf

#
#
#
#
http://canini.me/research_files/OnlineCollaborativeFiltering.pdf
http://canini.me/research_files/OnlineCollaborativeFiltering.pdf

	OnlineCF

