Automating Fetches with Python

How to Automate the Fetching Process

The Fetching process is one of the most essential processes for a production search engine. Automation of that process is also essential. This brief
document will cover the JobStream.py python script that is used to automate the fetching process including fetching, updating the crawl database, and
merging fetches into single segments. Please note that it is assumed that storage of the fetches is occuring on the Hadoop DFS (although the script could
be altered to run on the local file system).

The JobStream.py Process
JobStream.py is a single class python script that automates the webpage fetching / update process.

The job starts by dumping the crawl database to a local disk from the master crawl database in the distributed file system (dfs). The dump files are then
parsed to extract only unfetched urls which are appended to a single output file. Currently this is setup for only http urls. This url file is then split into
multiple runs of x number of pages each. This is performed in a temp folder on the local file system. Each run is then consecutively loaded into the dfs, and
run through the inject, generate, fetch, updatedb, and readdb commands. This happens in a temp folder on the dfs. There are options to setup x number of
fetch runs before merging occurs.

The master and temp crawldb and segments folders are then merged into a new folder and then temp folders on the dfs as well as the temp folders on the
local file system are deleted. The master folder is renamed to crawl-backup thereby giving us a single backup of previous data. This backup folder is
removed and replaced for each url split.

The process removes the local url load directory before moving on to the next url split. The script finishes when all url splits have been run. There are also
options to stop the script after the current fetch-merge run. You can then resume from that point at a later time.

The JobStream.py script automates only the fetching, updating, and merging processes. Inverting links and indexing are not covered yet although
development of a more complete automation framework is underway.

The JobStream Options

To start using the JobStream file you will probably want to set some configuration variables in the main def of the script. If you prefer you can override most
of these options on the command line. This is at the bottom of the script staring on line 374 and looks like this:

Main nmethod that starts up the script.

def main(argv):

# set the default val ues
resume = 0
execute = 0

checkfile = "jobstream stop"
| ogconf = "1 oggi ng. conf"
jobdir = "/d01/jobstreant
nutchdir = "/d01l/revol uti on"
masterdir = "craw"

backupdir = "craw - backup”
df sdunpdir = "craw dunp”
tenpdir = "crawl tenp"
splitsize = 500000
fetchnerge = 3

Th checkfile variable is the name of the stop file to check for. If this file is present in the same directory as the JobStream.py script, the script will stop
executing after the current fetch-update-merge run.

The logconf variable is the name of the logging file. You can configure logging for this script in a logging conf file that is in the same directory as the JobStre
am script. A sample logging file is provided later. Logging is set to go to the console by default.

The jobdir variable is the path of the local job directory. The one that the JobStream script live in and execute out of.
The nutchdir variable is the path to the base of the local nutch installation.

The masterdir variable is the path to the master directory on the dfs. This is the dfs directory that holds the crawldb and segments. The is also what the
temp directory that holds the operations on the dfs will be named after the merge processes are finished and the old master directory is backed up.

The backupdir variable is the path to the backup directory on the dfs. This is where the old master directory will be moved to when the newly fetched and
merged master is complete.

The dfsdump variable is the location on the dfs where the crawl database will be dumped to before being moved to the local file system for processing.
This is deleted as soon as the files are moved to local.


#
#
#
#
#
#
#
#
#
#

The tempdir variable is not yet implemented but will be the location on the dfs where the temporary fetching and merging operations will occur. For right
now this is hardcoded as crawltemp in the users directory on the dfs.

The splitsize variable is the number of urls to fetch in each load. The default is to fetch 500,000 urls in each load.

The fetchmerge variable is the number of fetches to run before merging. We want to keep the database up to date but we also don't want to waste
processing time. By having more fetches per merge, the merge process can merge multiple segments and crawl database in a single execution instead of
once per fetch. You can set this to 1 if you want to update once per fetch but the entire process will just take longer to complete. It is recommended to set
this to between 3 and 5 depending on your bandwidth, processing power, and the size of your crawl databases and segments. The default is three fetches
merged after the third fetch is complete.

Below is an example of the JobStream help screen. You can get to this screen at any point in time by using the -h or --help options.

JobStream py [-hrjnlsnc]
[-e | --execute] runs the jobstream
[-h | --help] prints this help and usage nessage.
r | --resume] to resume a previous run.
I | --logconf] Overrides |ogging conf file [logging.conf].
j | --jobdir] The job directory, [/dO01l/jobstreani.
| --nutchdir] The nutch hone, [/dO0l/revolution].
| --masterdir] The dfs naster directory [craw].
| --backupdir] The master backup directory, [craw -backup].
| --splitsize] The nunber of urls per |oad [500000].
| --fetchnerge] The nunber of fetches to run before nerge [1].

[_
[.
[.
[_
[.
[_
[.
[.

n
m
b
s
f

The -e or --execute options run the jobstream. Use these option if you are starting a new jobstream process. If you are resuming an old process that you
stopped before completion, use the -r or --resume options.

The rest of the options are pretty self explanatory and simply override the options that are set in the main def of the script. To start up a jobstream that will
fetch 5 runs of 1,000,000 urls each before merging you would use a command like this.

./ JobStream py -s 1000000 -f 5
or alternatively
./ JobStream py --splitsize=1000000 --fetchmerge=5

This assumes that you have set basic options in the main def of the script and are overriding basic options.

The JobStream.py Script
#!' [ usr/ bi n/ pyt hon

inport sys

i nport getopt

import re

inport | ogging

i mport | ogging.config
i mport commands

i nport os

import os.path

The JobStream cl ass automates the webpage fetching / update process.

The job starts by dunping the crawl database to a |ocal disk fromthe master
craw database in the distributed file system (dfs). The dunp files are then
parsed to extract only unfetched urls which are appended to a single output
file. This url fileis then split into nultiple runs of x nunber of pages
each. Each run is then consecutively |oaded into the dfs, and run through
the inject, generate, fetch, updatedb, and readdb commands. This happens in
a tenp folder.

The naster and tenp craw db and segnents folders are then nerged into a new
folder and then tenp folders are deleted. The naster folder is renanmed to
crawl - backup thereby giving us a single backup of previous data. This backup
folder is renoved and replaced for each url split.

The process renoves the local url load directory before noving on to the next


#
#

url split. The script finishes when all url splits have been run.
Use the -h or the --help flag to get a listing of options.

Program JobStream Aut onati on
Aut hor: Dennis E. Kubes

Dat e: Decenber 12, 2006
Revision: 1.2

Revi si on | Author | Conment
20060906-1.0 Dennis E. Kubes Initial creation of JobStream script.
20060907-1.1 Added conmmand |ine options for configuration,

added comments, fixed bugs, added resune and
stop after current url run conpletes.

20061205-1. 2 Added conmmand |ine options and logic to run
multiple fetches before merging. This is to
improve performance by not having to nerge
as often.

cl ass JobStream

nutchdir = ""
masterdir = ""
backupdir =
I og = I oggi ng. get Logger ("j obstreant)

Constructor for the JobStreamclass. Passes in the nutch home directory and
the nutch master directory

def __init__(self, nutchdir, nasterdir, backupdir):

# set the nutch directory home (where the bin directory for running the
# nutch commands is), and the master crawl directory on the dfs
self.nutchdir = nutchdir

self.masterdir = masterdir

sel f. backupdir = backupdir

Checks the status of result codes in the returned result array and raises an
error if the result code is not a successful exit.
def checkStatus(self, result, err):
if result[0] !'= O:
raise err +" " + result[1]

Dunps the naster crawl database first to the dfs at the dfsdir |ocation and
then copies to the local file systemat localdir. The dfsdir is renoved
once the dump is copied to the local filesystem

def dunpCraw Db(self, dfsdir, localdir):

# create the nutch commands

cram db = self.masterdir + "/craw db"

dunp = self.nutchdir + "/bin/nutch readdb " + crawdb + " -dunmp " + dfsdir

copylocal = self.nutchdir + "/bin/hadoop dfs -copyToLocal " + dfsdir + " " + localdir
del etetenp = self.nutchdir + "/bin/hadoop dfs -rm" + dfsdir

# execute the nutch commands and get each exit code, if it exited
# with an error raise an exception
nut chcnds = (dunp, copylocal, deletetenp)
for curcmd in nutchcmds:
self.log.info("Running: " + curcnd)
result = commands. get st at usout put (cur cnd)
sel f.checkStatus(result, "Error occurred while running conmand " + curcnd)



Parses the crawl dunmp files on the local filesystemfor unfetched urls and
appends all of the unfetched urls to a single output file.

def parseCraw Dunp(self, indir, outfile):

# open the output file in append node
out handl e = open(outfile, "a"

# |l oop through each file in the dunp directory but only get the
# part-xxxxx files because there are .crc file in the same directory
for dumpfile in os.listdir(indir):

if dunpfile[0:4] == "part"
curfile = indir + "/" + dunpfile
self.log.info("Processing dunp file: " + curfile)

# set the input and output files
inhandl e = open(curfile, "r")

# setup the regul ar expressions for searching and natching

validUl = "~http://(?20 YO\WH[:]2){2,}(/ 2] [~ \n\r\"]+[\w ])(?=[\s\., )\ A"\ ]])"
url Regex = re.conpile(validurl)

unf et chedRegex = re. conpil e("DB_unfetched")

# loop over the file, and match lines that are valid http:// urls where the
# next line says that it is unfetched. Wite those lines to the outfile
prevline = ""
for line in inhandle
if url Regex. search(line)
prevline = line
elif unfetchedRegex.search(line) and prevliine !="":
fields = prevline.strip("\n").split("\t")
url = fields[0]
prevline = ""
out handl e.wite(url + "\n")

# close the file connections
i nhandl e. cl ose()

# close the output file
out handl e. cl ose()

Creates the url splits. Each split will be a file that contains the nunber of
splitsize urls. Each split is in its own nunber directory with a file in the
directory named urls that contains the actual urls to be fetched

def createUrl Loads(self, splitsize, urllist, outdir)

# if the directory that holds the url |oads doesn't exists, create it
if not os.path.isdir(outdir)
os. nkdir (outdir)

# deternmine the total nunber of urls in the file and create a padding string
# used to nane the output folders correctly
total _urls =0
urllinecount = open(urllist, "r")
for line in urllinecount
total _urls +=1
urllinecount.close()
nunmsplits = total _urls / splitsize
padding = "0" * len(repr(nunsplits))

# create the url |oad folder

filenum= 0

strfilenum = repr(filenum

urloutdir = outdir + "/urls-" + padding[len(strfilenum):] + strfilenum
os. nkdir (urloutdir)



urlfile = urloutdir + "/urls"

# open the input and output files
self.log.info("Creating load file:
inhandl e = open(urllist, "r")
outhandl e = open(urlfile, "w')

+ urlfile)

# loop through the file
for linenum line in enunerate(inhandle):

# if we have come to a split then close the current file, create a new
# url folder and open a new url file
if linenum> 0 and linenum % splitsize ==

filenum+= 1

strfilenum = repr(filenum

urloutdir = outdir + "/urls-" + padding[len(strfilenum):] + strfilenum
os. nkdir (urloutdir)

urlfile = urloutdir + "/urls"
self.log.info("Creating load file:
out handl e. cl ose()

outhandl e = open(urlfile, "w")

+ urlfile)

# wite the url to the file
outhandl e.wite(line)

# close the input and output files
i nhandl e. cl ose()
out handl e. cl ose()

Runs all of the url loads. For each of the url load directories it |oads the
url file into the dfs and then runs the inject, generate, fetch, readdb, and
updat edb commands. This tenp load is then nerged with the master database to
create a new database. The ol d database is stored as backup, the new database
takes the place as the naster database, and the tenp database is renpved.

At the end of each url load the process will check to see if a stopfile is
present on the system |If the file is present, this indicates to the process
to stop running. The stop file will be renbved and the process will term nate.
The process can be restarted later with the -r or --resune flags and it wll
pick up where it left off on the next url | oad.

def runFetchMerges(self, urllistdir, stopfile, fetchnerges):

# get the folders for the url directory and sort them this is reason the
# folders needs to be naned correctly, so they are | oaded in order
urldirs = os.listdir(urllistdir)

urldirs.sort()

count er 0

nundirs = len(urldirs)

# variables for the crawl db and segnents directories on the dfs
mastercrawl dbdir = self.masterdir + "/craw db"
mast ersegsdir = self.masterdir + "/segnents”

# for each of the url |oads
whil e counter < nundirs:

# list to hold individual fetches and segnents
tenpseglist =[]
tempdblist =[]

# run the nunber of fetches before nerging, this allows us to inprove
# performance by not having to nerge as often
for curl in urldirs[counter:counter + fetchnerges]:

# set the current |load directory
curloaddir = urllistdir + "/" + curl
self.log.info("Starting current load: " + curloaddir)



# create the nutch commands for |oad, inject, generate

tenpdb = "crawl tenp/crawl db" + str(counter)

tenpdbl i st. append(t enpdb)

load = self.nutchdir + "/bin/hadoop dfs -put + curloaddir + " crawltenp/urls" + str(counter)
inject = self.nutchdir + "/bin/nutch inject + tenpdb + " craw tenp/urls" + str(counter)
generate = self.nutchdir + "/bin/nutch generate " + tenpdb + " craw tenp/segnments" + str(counter)

# run the load, inject, and generate comrands, check the results, if bad exit
nutchcnds = (1l oad, inject, generate)
for curcnd in nutchcnds

self.log.info("Running: " + curcnd)

result = commands. get st at usout put (cur cnd)

sel f.checkStatus(result, "Error occurred while running conmand" + curcnd)

# get the current segment to fetch

self.log.info("Cetting segnent to fetch.")

getsegnent = self.nutchdir + "/bin/hadoop dfs -lIs craw tenp/segnents" + str(counter)
sel f.log.info("Running: " + getsegnent)

result = conmands. get st at usout put (get segnent)

sel f.checkStatus(result, "Error occurred while running command" + getsegnent)

# fetch the current segment

outar = result[1].splitlines()

out put = outar|[- 1]

tenpseg = output.split()[O0]
tenpsegl i st. append(tenpseg)

fetch = self.nutchdir + "/bin/nutch fetch " + tenpseg
self.log.info("Starting fetch for: " + tenpseg)
self.log.info("Running: " + fetch)

result = commands. get st at usout put (f et ch)

sel f.checkStatus(result, "Error occurred while running command" + fetch)
self.log.info("Finished fetch for: " + tenpseg)

# update the crawl db fromthe current segnent

self.log.info("Updating " + tenpdb + " from" + tenpseg + ".")

updatetenp = self.nutchdir + "/bin/nutch updatedb " + tenpdb + " " + tenpseg
sel f.log.info("Running: " + updatetenp)

result = conmands. get st at usout put (updat et enp)

sel f.checkStatus(result, "Error occurred while running command" + updat et enp)

# renmove the current url load directory

self.log.info("Renoving current local load directory: " + curloaddir)
os.renove(curloaddir + "/urls")

os.rndir (curl oaddir)

# log the current url finished
sel f.log.info("Finished current |oad

+ curl oaddir)

#i ncrenment the counter
counter += 1

# nmerge the craw dbs
self.log.info("Merging master and tenp craw dbs.")
crawl nerge = self.nutchdir + "/bin/nutch nergedb nergetenp/craw db " + \

sel f.log.info("Running

mastercrawl dbdir + " " + " "_join(tenpdblist)
" + crawl nerge)

result = commands. get st at usout put (cr aw nmer ge)
sel f.checkStatus(result, "Error occurred while running conmand" + craw nerge)

# nerge the segnents

self.log.info("Merging master and tenp segnents")

getsegnent = self.nutchdir + "/bin/hadoop dfs -Is " + nastersegsdir

result = commands. get st at usout put (get segnent)

sel f.checkStatus(result, "Error occurred while running conmand" + getsegnent)
outar = result[1].splitlines()

output = outar[-1]

mast erseg = output.split()[O0]

mergesegs = self.nutchdir + "/bin/nutch nergesegs nergetenp/segnents " + \

masterseg + " " + " ".join(tenpseglist)

self.log.info("Running: " + nergesegs)
result = commands. get st at usout put ( mer gesegs)



sel f.checkStatus(result, "Error occurred while running conmand" + nergesegs)

# back up the master, renane the nerged to master, and renove the tenp

sel f.l og.info("Backi ng up, deleting, and renaning of nerge resources")

rmol dback = sel f.nutchdir + "/bin/hadoop dfs -rm" + self.backupdir

sel f.log.info("Running: " + rnol dback)

result = commands. get st at usout put (r mol dback)

sel f.checkStatus(result, "Error occurred while running conmand" + rnol dback)

mast erback = sel f.nutchdir + "/bin/hadoop dfs -mv " + self.masterdir + " " + self.backupdir

sel f.log.info("Running: + nmast er back)

result = commands. get st at usout put ( mast er back)

sel f.checkStatus(result, "Error occurred while running command" + nasterback)
mergenove = sel f.nutchdir + "/bin/hadoop dfs -nv nergetenp " + self.nasterdir
sel f.log.info("Running: " + nergenove)

result = commands. get st at usout put ( mer genove)

sel f.checkStatus(result, "Error occurred while running conmand" + nergenove)
deltenp = self.nutchdir + "/bin/hadoop dfs -rmcraw tenp”
self.log.info("Running: " + deltenp)

result = commands. get st at usout put (del t enp)

sel f.checkStatus(result, "Error occurred while running conmand" + deltenp)

# read the current master database stats and put the output into the |og
sel f.l og.info("Readi ng dat abase statistics")

dbnane = self.masterdir + "/craw db"

readdb = self.nutchdir + "/bin/nutch readdb " + dbname + " -stats"
self.log.info("Running: " + readdb)

result = commands. get st at usout put (readdb)

sel f.checkStatus(result, "Error occurred while running conmand" + readdb)
output = result[1]

sel f. 1 0g.info(output)

# check to see if the stop file is present, if it is renove the stopfile
# and exit the script successfully
if os.path.isfile(stopfile):
self.log.info("Found stopfile " + stopfile + ". Renoving stopfile and " +
"exiting script.")
os.renove(stopfile)
sys. exi t (0)

Prints out the usage for the command |ine

def usage()
usage = ["JobStream py [-hrjnlsnt]\n"]

usage. append(" [-e | --execute] runs the jobstream\n")
usage. append(" [-h | --help] prints this help and usage nmessage.\n")
usage. append(" [-r --resune] to resune a previous run.\n")

usage. append(" [-1
usage. append(" [

usage. append(" [-n
usage. append(" [-m
usage. append(" [-b
usage. append(" [-s
usage. append(" [-f
nessage =

|

| --logconf] Overrides |ogging conf file [logging.conf].\n")

| --jobdir] The job directory, [/dO1l/jobstreani.\n")

| --nutchdir] The nutch hone, [/dOl/revolution].\n")

| --masterdir] The dfs naster directory [craw].\n")

| --backupdir] The master backup directory, [craw -backup].\n")
| --splitsize] The number of urls per |oad [500000].\n")

|

".join(usage)

print nessage

Main method that starts up the script.

def nmin(argv)

# set the default val ues
resume = 0
execute = 0

checkfile = "jobstream stop”
I ogconf = "1 o0ggi ng. conf"
jobdir = "/d01/jobstreant
nutchdir = "/d01l/revol ution"
masterdir = "craw "

backupdir = "craw - backup"”

--fetchmerge] The nunber of fetches to run before merging [1].\n")



df sdunpdir = "craw dunp"
tenpdir = "crawl tenp”
splitsize = 500000
fetchnerge = 3

try:
# process the command |ine options
opts, args = getopt.getopt(argv, "hrej:n:l:s:mb:f:d:t:", ["help","logconf=","jobdir="
"resune", "nutchdir=","splitsize=","masterdir=","backupdir=","fetchnerge=", "execute"

"dunpdi r=", "tenpdir="])

# if no argunents print usage
if len(argv) ==

usage()

sys. exit()

# loop through all of the conmand |ine options and set the appropriate
# val ues, overriding defaults
for opt, arg in opts

if opt in ("-h", "--help")

usage()
sys.exit()

elif opt in ("-r", "--resume")
resune = 1

elif opt in ("-e", "--execute"):
execute = 1

elif opt in ("-1", "--logconf"):
I ogconf = arg

elif opt in ("-j", "--jobdir")
jobdir = arg

elif opt in ("-n", "--nutchdir")
nutchdir = arg

elif opt in ("-m, "--masterdir"):
masterdir = arg

elif opt in ("-b", "--backupdir")
backupdir = arg

elif opt in ("-d", "--dunpdir"):
df sdunpdir = arg

elif opt in ("-t", "--tenmpdir"):
tempdir = arg

elif opt in ("-s", "--splitsize")
splitsize = int(arg)

elif opt in ("-f", "--fetchmerge")
fetchmerge = int(arg)

except getopt. GetoptError

# if an error happens print the usage and exit with an error
usage()
sys.exit(2)

# if we are running the jobstream
if execute

# setup the file and folder variables, setup the |ogging
| oggi ng. config.fileConfig(logconf)

I ocal dunpdir = jobdir + "/l ocal dunp"

loaddir = jobdir + "/urllists"

unfetched = | ocal dunpdir + "/unfetched.urls"

checkpath = jobdir + "/" + checkfile

# create the job stream object
jobStream = JobStrean(nutchdir, nmasterdir, backupdir)

# if we not resunming then dunp, parse and create the url |oads
if not resune:
j obSt ream dunpCr awl Db( df sdunpdi r, | ocal dunpdir)
j obSt ream par seCrawl Dunp(| ocal dunpdi r, unfetched)
jobStream createUr| Loads(splitsize, unfetched, |oaddir)



# merging or not run the url |oads
jobStream runFet chMerges( | oaddir, checkpath, fetchnerge)

# if we are running the script fromthe command line, run the nmain
# method of the JobStream cl ass
if __name__ =="__main__":

mai n(sys.argv[1:])

The JobStream Logging.conf File

[formatters]
keys=si npl e

[ handl er s]
keys=consol e

[1 oggers]
keys=r oot , engi ne

[formatter_sinple]
format =% nane)s : %l evel name)s : Y nessage)s

[ handl er _consol €]

cl ass=St r eantandl er
args=[]
formatter=sinple

[1 ogger _root]
| evel =I NFO
handl er s=consol e

[1 ogger _engi ne]

| evel =I NFO

qual nanme=j obst r eam
pr opagat e=0

handl er s=consol e

Conclusion

If you want to get further into the operations of the script | suggest reading the source. It is well documented with both documentation and code comments.
Alternatively you can send me an email at nutch-dev at dragonflymc dot com if you have any questions.


#

	Automating Fetches with Python

