
MultiLingualSupport

Multi-Lingual Support in Nutch

Jérôme Charron

17 June 2005

DRAFT

Introduction

The goal of this proposal is to provide a solution for multi-lingual support in Nutch. Multi-lingual support means to be able to use a language specific Analyz
 during searching and analysing.er

Configuration

The configuration of this behaviour is done using the standard and properties of the nutch configuration file. For plugin.includes plugin.excludes
instance, to add French, English and German analysis support for both document analysis and query parsing, just add in the Nutch configuration file:

<property>
 <name>plugin.includes</name>
 <value>...|analysis-(fr|en|de)|...</value>
 ...
</property>

If no language specific analyzer plugin is specified in the configuration then the default implementation (ie NutchAnalyzer NutchDocumentAnalyzer
will be used for document analysis (similar to the actual implementation), and no language dependent analysis will be performed on the .Query

Nutch Analysis Plugin

NutchAnalyzer Extension Point

The interface defines a new Nutch extension point. This interface is simply an abstract class that extends the Lucene class, NutchAnalyzer Analyzer
so that Lucene analyzers could be easily integrated as plugins.NutchAnalyzer

 extensions should define the attribute " " in order to be associated to a particular language code.NutchAnalyzer lang

AnalyzerFactory

The class is responsible of instanciating the implementation to use depending on the Nutch analysis plugins AnalyzerFactory NutchAnalyzer
configuration and a specified language code.

The policy for finding the extension to use is to return the first one that match a specified language code. If none is AnalyzerFactory NutchAnalyzer
found, then the default is returned.NutchDocumentAnalyzer

Document Analysis

Language Code Source

The language specific document analysis is based on the result of the . It just call the with the attribute LanguageIdentifierPlugin AnalyzerFactory lang
provided by the .LanguageIdentifierPlugin

Code modifications

Impacts on the actual code is very light to add multi-lingual capabilities for document analysis. First, on the part of the code of the class IndexSegment
that add a document to the index, the line

indexWriter.addDocument(doc);

should be replaced by

http://lucene.apache.org/java/docs/api/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/docs/api/org/apache/lucene/analysis/Analyzer.html
#
#
https://cwiki.apache.org/confluence/display/NUTCH/LanguageIdentifierPlugin
https://cwiki.apache.org/confluence/display/NUTCH/LanguageIdentifierPlugin

1.

indexWriter.addDocument(doc, AnalyzerFactory.get(doc.get("lang")));

so that, the is called with the good implementation.IndexWriter Analyzer

(Note by) This seems to have been implemented in Nutch 0.8. The following lines are found in , not which no KurosakaTeruhiko Indexer IndexSegment
longer exists in Nutch 0.8:

final AnalyzerFactory factory = new AnalyzerFactory(job);
 .
 .
 .
NutchAnalyzer analyzer = factory.get(doc.get("lang"));

Second, the class must implement the class.NutchDocumentAnalyzer NutchAnalyzer
(Note by) This has been done in Nutch 0.8.KurosakaTeruhiko

Query Analysis

Language Code Source

The language specific query analysis is based on a attribute like for the Document Analysis. But the attribute in this case must be retrieved lang lang
from the front-end using the following policy:

Use an optional attribute provided by the search interface. 2. If no such attribute is provided by the search interface, then uses the Browser lang
language. 3. (try to identify the query language using the)(Note by : This probably won't work well LanguageIdentifierPlugin KurosakaTeruhiko
because queries are usually too short to tell a language. "chat" can be English or French, for example. What language is "Euro"?)

Code modifications

The query analysis requires more code modifications than the document analysis. The first impact on the searcher code is to be able to get the lang
attribute from the front-end. This is done by adding the following method in the class:Query

public static Query parse(String queryString, String lang) throws IOException;

This method then uses the to retrieve the analyzer to use for parsing the query terms. The class that is only used as AnalyzerFactory NutchAnalysis
a query parser, will be renamed to (like in Lucene), and will be very similar to the Lucene by providing a method with QueryParser QueryParser parse
an as parameter:Analyzer

public static Query parse(String query, Analyzer analyzer);

—
(Note by) In Nutch 0.8.1 this is already implemented in the class:AlessandroGasparini Query

public static Query parse(String queryString, String queryLang, Configuration conf)
throws IOException {
 return fixup(NutchAnalysis.parseQuery(
 queryString, AnalyzerFactory.get(conf).get(queryLang), conf), conf);
 }

More Notes

(Note by) The specified analizers performs language Stemming so if you would you can search for "retrieval" and you can get all the AlessandroGasparini
documents in which the stem "retriev" appears. On my configuration i used the , and the analysis-(language) plugins for both the crawler LanguageIdentifier
and the web application. I've attached my nutch-site.xml to show the complete plugin configuration nutch-site.xml

The use of stemming needs to be carefully evaluated for a given corpus and target audience. There are a few aspects to be considered:

stemming is language-specific, but if the corpus is mixed-language, even if we detect the language of each document and apply a proper
stemmer, we are still facing the problem of correct identification of the language of the query (and applying the correct stemmer to the query - see
above).
stemming is likely to increase recall, but also it's likely to reduce precision. It's more useful for morphologically rich languages, and it's also more
useful for smaller collections (where users prefer to receive any results, even if they are less precise, over receiving none results whatsoever -

#
#
https://cwiki.apache.org/confluence/display/NUTCH/LanguageIdentifierPlugin
#
#
#
https://cwiki.apache.org/confluence/display/NUTCH/LanguageIdentifier
https://cwiki.apache.org/confluence/download/attachments/115512157/nutch-site.xml?version=1&modificationDate=1558186612000&api=v2

thus trading precision for recall). For larger corpora consisting of mostly mono-lingual documents stemming usually doesn't improve quality of
results.
there is usually more than one different stemmer implementation for a given language, each giving different results in terms of precision/recall for
a given corpus. Sometimes an aggressive, iterative stemmer (such as the Porter stemmer) may give worse results than a light custom stemmer
that only conflates single/plural forms.

References

The thread on the nutch-dev mailing list."Multi-lingual support"
The thread on the java-user Lucene mailing list."Indexing multiple languages"
Stemming - Wikipedia, the free encyclopedia

http://www.mail-archive.com/nutch-dev%40incubator.apache.org/msg00933.html
http://www.mail-archive.com/java-user@lucene.apache.org/msg01197.html
http://en.wikipedia.org/wiki/Stemming

	MultiLingualSupport

