
NutchTutorial
Introduction
Nutch is a well matured, production ready Web crawler. Nutch 1.x enables fine grained configuration, relying on Apache Hadoop data structures, which are
great for batch processing. Being pluggable and modular of course has it's benefits, Nutch provides extensible interfaces such as Parse, Index and Scoring

's for custom implementations e.g. Apache Tika for parsing. Additonally, pluggable indexing exists for Apache Solr, Elastic Search, , etc. We Filter SolrCloud
can find Web page hyperlinks in an automated manner, reduce lots of maintenance work, for example checking broken links, and create a copy of all the
visited pages for searching over. This tutorial explains how to use Nutch with . Solr is an open source full text search framework, with Solr we Apache Solr
can search pages acquired by Nutch. Apache Nutch supports Solr out-the-box, simplifying Nutch-Solr integration. It also removes the legacy dependence
upon both Apache Tomcat for running the old Nutch Web Application and upon Apache Lucene for indexing. Just download a binary release from .here

Learning Outcomes
By the end of this tutorial you will

Have a configured local Nutch crawler setup to crawl on one machine
Learned how to understand and configure Nutch runtime configuration including seed URL lists, URLFilters, etc.
Have executed a Nutch crawl cycle and viewed the results of the Crawl Database
Indexed Nutch crawl records into Apache Solr for full text search

Any issues with this tutorial should be reported to the list.Nutch user@

Table of Contents

Introduction
Learning Outcomes
Table of Contents
Steps
Requirements
Install Nutch

Option 1: Setup Nutch from a binary distribution
Option 2: Set up Nutch from a source distribution
Option 3: Set up Nutch from source

Verify your Nutch installation
Crawl your first website

Customize your crawl properties
Create a URL seed list

Create a URL seed list
(Optional) Configure Regular Expression Filters

Using Individual Commands for Whole-Web Crawling
Step-by-Step: Concepts
Step-by-Step: Seeding the crawldb with a list of URLs

Bootstrapping from an initial seed list.
Step-by-Step: Fetching
Step-by-Step: Invertlinks
Step-by-Step: Indexing into Apache Solr
Step-by-Step: Deleting Duplicates
Step-by-Step: Cleaning Solr

Using the crawl script
Setup Solr for search
Verify Solr installation
Whats Next

Steps

Requirements
Unix environment, or Windows- environmentCygwin
Java Runtime/Development Environment (JDK 11 / Java 11)
(Source build only) Apache Ant: https://ant.apache.org/

This tutorial describes the installation and use of Nutch 1.x (e.g. release cut from the master branch). For a similar Nutch 2.x with HBase
tutorial, see .Nutch2Tutorial

#
#
#
https://lucene.apache.org/solr/
http://www.apache.org/dyn/closer.cgi/nutch/
http://nutch.apache.org/mailing_lists.html
https://www.cygwin.com/
https://ant.apache.org/
https://cwiki.apache.org/confluence/display/NUTCH/Nutch2Tutorial

Install Nutch

Option 1: Setup Nutch from a binary distribution

Download a binary package () from .apache-nutch-1.X-bin.zip here
Unzip your binary Nutch package. There should be a folder .apache-nutch-1.X
cd apache-nutch-1.X/
From now on, we are going to use } to refer to the current directory ().${NUTCH_RUNTIME_HOME apache-nutch-1.X/

Option 2: Set up Nutch from a source distribution

Advanced users may also use the source distribution:

Download a source package ()apache-nutch-1.X-src.zip
Unzip
cd apache-nutch-1.X/
Run in this folder (cf.)ant RunNutchInEclipse
Now there is a directory which contains a ready to use Nutch installation. runtime/local
When the source distribution is used } refers to . Note that${NUTCH_RUNTIME_HOME apache-nutch-1.X/runtime/local/
config files should be modified in apache-nutch-1.X/runtime/local/conf/
ant clean will remove this directory (keep copies of modified config files)

Option 3: Set up Nutch from source

See UsingGit#CheckingoutacopyofNutchandmodifyingit

Verify your Nutch installation
run " " - You can confirm a correct installation if you see something similar to the following:bin/nutch

Usage: nutch COMMAND where command is one of:
readdb read / dump crawl db
mergedb merge crawldb-s, with optional filtering
readlinkdb read / dump link db
inject inject new urls into the database
generate generate new segments to fetch from crawl db
freegen generate new segments to fetch from text files
fetch fetch a segment's pages
...

Some troubleshooting tips:

Run the following command if you are seeing "Permission denied":

chmod +x bin/nutch

Setup if you are seeing not set. On Mac, you can run the following command or add it to :JAVA_HOME JAVA_HOME ~/.bashrc

export JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/11/Home
note that the actual path may be different on your system

On Debian or Ubuntu, you can run the following command or add it to ~/.bashrc:

export JAVA_HOME=$(readlink -f /usr/bin/java | sed "s:bin/java::")

You may also have to update your /etc/hosts file. If so you can add the following

https://www.apache.org/dyn/closer.cgi/nutch/
https://cwiki.apache.org/confluence/display/NUTCH/RunNutchInEclipse
https://cwiki.apache.org/confluence/display/NUTCH/UsingGit#UsingGit-CheckingoutacopyofNutchandmodifyingit

1.
2.

##
Host Database
#
localhost is used to configure the loopback interface
when the system is booting. Do not change this entry.
##
127.0.0.1 localhost.localdomain localhost LMC-032857
::1 ip6-localhost ip6-loopback
fe80::1%lo0 ip6-localhost ip6-loopback

Note that the above should be replaced with your machine name.LMC-032857

Crawl your first website
Nutch requires two configuration changes before a website can be crawled:

Customize your crawl properties, where at a minimum, you provide a name for your crawler for external servers to recognize
Set a seed list of URLs to crawl

Customize your crawl properties

Default crawl properties can be viewed and edited within {{conf/nutch-default.xml }}- where most of these can be used without modification
The file serves as a place to add your own custom crawl properties that overwrite . The conf/nutch-site.xml conf/nutch-default.xml
only required modification for this file is to override the field of the {{http.agent.name }}value

i.e. Add your agent name in the field of the property in , for example:value http.agent.name conf/nutch-site.xml

<property>
 <name>http.agent.name</name>
 <value>My Nutch Spider</value>
</property>

ensure that the property within includes the indexer as plugin.includes conf/nutch-site.xml indexer-solr

Create a URL seed list

A URL seed list includes a list of websites, one-per-line, which nutch will look to crawl
The file will provide Regular Expressions that allow nutch to filter and narrow the types of web resources to crawl conf/regex-urlfilter.txt
and download

Create a URL seed list

mkdir -p urls
cd urls
touch seed.txt to create a text file under with the following content (one URL per line for each site you want Nutch to seed.txt urls/
crawl).

http://nutch.apache.org/

(Optional) Configure Regular Expression Filters

Edit the file and replaceconf/regex-urlfilter.txt

accept anything else
+.

with a regular expression matching the domain you wish to crawl. For example, if you wished to limit the crawl to the domain, the line nutch.apache.org
should read:

+^https?://([a-z0-9-]+\.)*nutch\.apache\.org/

1.
2.
3.

This will include any URL in the domain .nutch.apache.org

NOTE: Not specifying any domains to include within regex-urlfilter.txt will lead to all domains linking to your seed URLs file being crawled as well.

Using Individual Commands for Whole-Web Crawling

NOTE: If you previously modified the file as covered you will need to change it back.conf/regex-urlfilter.txt here

Whole-Web crawling is designed to handle very large crawls which may take weeks to complete, running on multiple machines. This also permits more
control over the crawl process, and incremental crawling. It is important to note that whole Web crawling does not necessarily mean crawling the entire
World Wide Web. We can limit a whole Web crawl to just a list of the URLs we want to crawl. This is done by using a filter just like the one we used when
we did the command (above).crawl

Step-by-Step: Concepts

Nutch data is composed of:

The crawl database, or crawldb. This contains information about every URL known to Nutch, including whether it was fetched, and, if so, when.
The link database, or linkdb. This contains the list of known links to each URL, including both the source URL and anchor text of the link.
A set of segments. Each segment is a set of URLs that are fetched as a unit. Segments are directories with the following subdirectories:

a names a set of URLs to be fetchedcrawl_generate
a contains the status of fetching each URLcrawl_fetch
a contains the raw content retrieved from each URLcontent
a contains the parsed text of each URLparse_text
a contains outlinks and metadata parsed from each URLparse_data
a contains the outlink URLs, used to update the crawldbcrawl_parse

Step-by-Step: Seeding the crawldb with a list of URLs

Bootstrapping from an initial seed list.

This option shadows the creation of the seed list as covered .here

bin/nutch inject crawl/crawldb urls

Now we have a Web database with your unfetched URLs in it.

Step-by-Step: Fetching

To fetch, we first generate a fetch list from the database:

bin/nutch generate crawl/crawldb crawl/segments

This generates a fetch list for all of the pages due to be fetched. The fetch list is placed in a newly created segment directory. The segment directory is
named by the time it's created. We save the name of this segment in the shell variable :s1

s1=`ls -d crawl/segments/2* | tail -1`
echo $s1

Now we run the fetcher on this segment with:

bin/nutch fetch $s1

Then we parse the entries:

bin/nutch parse $s1

When this is complete, we update the database with the results of the fetch:

bin/nutch updatedb crawl/crawldb $s1

Now the database contains both updated entries for all initial pages as well as new entries that correspond to newly discovered pages linked from the
initial set.

Now we generate and fetch a new segment containing the top-scoring 1,000 pages:

bin/nutch generate crawl/crawldb crawl/segments -topN 1000
s2=`ls -d crawl/segments/2* | tail -1`
echo $s2

bin/nutch fetch $s2
bin/nutch parse $s2
bin/nutch updatedb crawl/crawldb $s2

Let's fetch one more round:

bin/nutch generate crawl/crawldb crawl/segments -topN 1000
s3=`ls -d crawl/segments/2* | tail -1`
echo $s3

bin/nutch fetch $s3
bin/nutch parse $s3
bin/nutch updatedb crawl/crawldb $s3

By this point we've fetched a few thousand pages. Let's invert links and index them!

Step-by-Step: Invertlinks

Before indexing we first invert all of the links, so that we may index incoming anchor text with the pages.

bin/nutch invertlinks crawl/linkdb -dir crawl/segments

We are now ready to search with Apache Solr.

Step-by-Step: Indexing into Apache Solr

Note: For this step you should have Solr installation. If you didn't integrate Nutch with Solr. You should read .here

Now we are ready to go on and index all the resources. For more information see .the command line options

https://wiki.apache.org/nutch/bin/nutch%20index

Usage: Indexer (<crawldb> | -nocrawldb) (<segment> ... | -dir <segments>) [general options]

Index given segments using configured indexer plugins

The CrawlDb is optional but it is required to send deletion requests for duplicates
and to read the proper document score/boost/weight passed to the indexers.

Required arguments:

 <crawldb> path to CrawlDb, or
 -nocrawldb flag to indicate that no CrawlDb shall be used

 <segment> ... path(s) to segment, or
 -dir <segments> path to segments/ directory,
 (all subdirectories are read as segments)

General options:

 -linkdb <linkdb> use LinkDb to index anchor texts of incoming links
 -params k1=v1&k2=v2... parameters passed to indexer plugins
 (via property indexer.additional.params)

 -noCommit do not call the commit method of indexer plugins
 -deleteGone send deletion requests for 404s, redirects, duplicates
 -filter skip documents with URL rejected by configured URL filters
 -normalize normalize URLs before indexing
 -addBinaryContent index raw/binary content in field `binaryContent`
 -base64 use Base64 encoding for binary content

Example:
 bin/nutch index crawl/crawldb/ -linkdb crawl/linkdb/ crawl/segments/20131108063838/ -filter -normalize -
deleteGone

Step-by-Step: Deleting Duplicates

Duplicates (identical content but different URL) are optionally marked in the and are deleted later in the Solr index.CrawlDb

MapReduce "dedup" job:

Map: Identity map where keys are digests and values are recordsCrawlDatum
Reduce: with the same digest are marked (except one of them) as duplicates. There are multiple heuristics available to choose the CrawlDatums
item which is not marked as duplicate - the one with the shortest URL, fetched most recently, or with the highest score.

Usage: bin/nutch dedup <crawldb> [-group <none|host|domain>] [-compareOrder <score>,<fetchTime>,<httpsOverHttp>,
<urlLength>]

Deletion in the index is performed by the cleaning job (see below) or if the index job is called with the command-line flag .-deleteGone

For more information see .dedup documentation

Step-by-Step: Cleaning Solr

The class scans a crawldb directory looking for entries with status DB_GONE (404), duplicates or optionally redirects and sends delete requests to Solr for
those documents. Once Solr receives the request the aforementioned documents are duly deleted. This maintains a healthier quality of Solr index.

Usage: bin/nutch clean <crawldb> [-noCommit]
Example: bin/nutch clean crawl/crawldb/

For more information see .clean documentation

Using the crawl script

If you have followed the section above on how the crawling can be done step by step, you might be wondering how a bash script can be written to
automate all the process described above.

Nutch developers have written one for you , and it is available at . Here the most common options and parameters:bin/crawl

#
https://cwiki.apache.org/confluence/display/NUTCH/MapReduce
#
#
https://wiki.apache.org/nutch/bin/nutch%20dedup
https://wiki.apache.org/nutch/bin/nutch%20clean
#

Usage: crawl [options] <crawl_dir> <num_rounds>

Arguments:
 <crawl_dir> Directory where the crawl/host/link/segments dirs are saved
 <num_rounds> The number of rounds to run this crawl for

Options:
 -i|--index Indexes crawl results into a configured indexer
 -D A Nutch or Hadoop property to pass to Nutch calls overwriting
 properties defined in configuration files, e.g.
 increase content limit to 2MB:
 -D http.content.limit=2097152
 (distributed mode only) configure memory of map and reduce tasks:
 -D mapreduce.map.memory.mb=4608 -D mapreduce.map.java.opts=-
Xmx4096m
 -D mapreduce.reduce.memory.mb=4608 -D mapreduce.reduce.java.opts=-
Xmx4096m
 -w|--wait <NUMBER[SUFFIX]> Time to wait before generating a new segment when no URLs
 are scheduled for fetching. Suffix can be: s for second,
 m for minute, h for hour and d for day. If no suffix is
 specified second is used by default. [default: -1]
 -s <seed_dir> Path to seeds file(s)
 -sm <sitemap_dir> Path to sitemap URL file(s)
 --hostdbupdate Boolean flag showing if we either update or not update hostdb for each
round
 --hostdbgenerate Boolean flag showing if we use hostdb in generate or not
 --num-fetchers <num_fetchers> Number of tasks used for fetching (fetcher map tasks) [default: 1]
 Note: This can only be set when running in distributed mode and
 should correspond to the number of worker nodes in the cluster.
 --num-tasks <num_tasks> Number of reducer tasks [default: 2]
 --size-fetchlist <size_fetchlist> Number of URLs to fetch in one iteration [default: 50000]
 --time-limit-fetch <time_limit_fetch> Number of minutes allocated to the fetching [default: 180]
 --num-threads <num_threads> Number of threads for fetching / sitemap processing [default: 50]
 --sitemaps-from-hostdb <frequency> Whether and how often to process sitemaps based on HostDB.
 Supported values are:
 - never [default]
 - always (processing takes place in every iteration)
 - once (processing only takes place in the first iteration)

The crawl script has lot of parameters set, and you can modify the parameters to your needs. It would be ideal to understand the parameters before setting
up big crawls.

Setup Solr for search
Every version of Nutch is built against a specific Solr version, but you may also try a "close" version.

Nutch Solr

1.19 8.11.2

1.18 8.5.1

1.17 8.5.1

1.16 7.3.1

1.15 7.3.1

1.14 6.6.0

1.13 5.5.0

1.12 5.4.1

To install Solr 8.x (or upwards):

download binary file from here
unzip to , we will now refer to this as }$HOME/apache-solr ${APACHE_SOLR_HOME
create resources for a new "nutch" Solr core

https://www.apache.org/dyn/closer.cgi/lucene/solr/

mkdir -p ${APACHE_SOLR_HOME}/server/solr/configsets/nutch/
cp -r ${APACHE_SOLR_HOME}/server/solr/configsets/_default/* ${APACHE_SOLR_HOME}/server/solr/configsets
/nutch/

copy the Nutch's schema.xml into the Solr directoryconf

(Nutch 1.15 or prior) copy the schema.xml from the conf/ directory:

cp ${NUTCH_RUNTIME_HOME}/conf/schema.xml ${APACHE_SOLR_HOME}/server/solr/configsets/nutch/conf/

(Nutch 1.16 and upwards) copy the schema.xml from the indexer-solr source folder (source package):

cp .../src/plugin/indexer-solr/schema.xml ${APACHE_SOLR_HOME}/server/solr/configsets/nutch/conf/

or indexer-solr plugins folder (binary package):

cp .../plugins/indexer-solr/schema.xml ${APACHE_SOLR_HOME}/server/solr/configsets/nutch/conf/

Note for Nutch 1.16: due to the schema.xml is not contained in the 1.16 binary package. Please download the NUTCH-2745 schema.xml
from the source repository.
You may also try to use the most recent in case of issues launching Solr with this schema.schema.xml

make sure that there is no "in the way":managed-schema

rm ${APACHE_SOLR_HOME}/server/solr/configsets/nutch/conf/managed-schema

start the solr server

${APACHE_SOLR_HOME}/bin/solr start

create the nutch core

${APACHE_SOLR_HOME}/bin/solr create -c nutch -d ${APACHE_SOLR_HOME}/server/solr/configsets/nutch/conf/

After that you need to point Nutch to the Solr instance:

(Nutch 1.15 and later) edit the file , see conf/index-writers.xml IndexWriters
(until Nutch 1.14) add the core name to the Solr server URL: -Dsolr.server.url=http://localhost:8983/solr/nutch

Verify Solr installation
After you started Solr admin console, you should be able to access the following links:

http://localhost:8983/solr/#/

You should be able to navigate to the core and view the managed-schema, etc.nutch

Whats Next
You may want to check out the documentation for the to get an overview of the work going on towards providing Apache CXF based Nutch 1.X REST API
REST services for Nutch 1.X branch.

https://issues.apache.org/jira/browse/NUTCH-2745
https://raw.githubusercontent.com/apache/nutch/release-1.16/src/plugin/indexer-solr/schema.xml
https://raw.githubusercontent.com/apache/nutch/master/src/plugin/indexer-solr/schema.xml
https://lucene.apache.org/solr/guide/7_5/schema-factory-definition-in-solrconfig.html#SchemaFactoryDefinitioninSolrConfig-SolrUsesManagedSchemabyDefault
https://cwiki.apache.org/confluence/display/NUTCH/IndexWriters
http://localhost:8983/solr/nutch
https://wiki.apache.org/nutch/Nutch_1.X_RESTAPI

	NutchTutorial

