ExtendingPrivilegeSeparation

Introduction

This httpd setup is inspired by DifferentUserIDsUsingReverseProxy. However it takes the idea a couple of steps further, and describes other, everyday
aspects one might stumble upon. It's been tested - in production - for many years now, is very stable, scalable and most imporantly: secure.

The first deviation from DifferentUserlDsUsingReverseProxy, is to run all backends on high-ports (as it has only later been added). This has two
consequences:

1. All backends can be started and run as unprivileged users, no privilege escalation can happen from malicious scripts executed by httpd. 2. The
frontend never executes third party code, it's security concerns are confined within the limits of the Apache HTTPd.

Furthermore we shall demonstrate how to secure PHP applications without safe-mode. Finally we'll peek into automating the entire process with mod_macrc

Introduction
Bare minimum
Frontend
Backends
© Base Config
© The VHosts
" Simple
" PHP
= Complex
® Automation with mod_macro

Bare minimum

A great deal of the configurations is shared accross all the instances of httpds, so we'll show it here:

http://wiki.apache.org/httpd/DifferentUserIDsUsingReverseProxy
http://wiki.apache.org/httpd/DifferentUserIDsUsingReverseProxy
http://ilia.ws/archives/18_PHPs_safe_mode_or_how_not_to_implement_security.html
http://cri.ensmp.fr/~coelho/mod_macro/

Server Root "/opt/es"

Server Adm n webnast er @sot eri csyst ens. at

LoadModul e aut hz_host _nodul e | i bexec/ apache/ nod_aut hz_host . so
LoadModul e incl ude_nodul e |i bexec/ apache/ nod_i ncl ude. so
LoadModul e charset _lite_npdul e |ibexec/ apache/ nod_charset _lite.so
LoadModul e env_nodul e |i bexec/ apache/ mod_env. so

LoadModul e mi me_mmagi c_nodul e | i bexec/ apache/ nod_ni me_nmagi c. so
LoadModul e expires_nodul e |ibexec/ apache/ nod_expires. so
LoadMbdul e headers_nodul e |i bexec/ apache/ nod_headers. so
LoadModul e setenvif_nodul e |ibexec/ apache/ nod_setenvif.so
LoadModul e mi me_nodul e | i bexec/ apache/ nod_mi ne. so

LoadMbdul e negoti ati on_nodul e |i bexec/ apache/ nod_negoti ati on. so
LoadModul e di r_nodul e |i bexec/ apache/ mod_dir. so

LoadModul e al i as_nodul e |i bexec/ apache/ nod_al i as. so

<Directory />
Options Fol | owSynili nks
Al'l owOverride None
Order deny, al | ow
Deny from al |
</Directory>

Di rectoryl ndex index. htnl

<FilesMatch "™\ .ht">
O der al |l ow, deny
Deny from all
Satisfy Al

</ Fi | esMat ch>

LogLevel warn

Def aul t Type text/plain

Expi resActive on

TypesConfi g etc/apache/ m ne. types

M MEMagi cFi |l e etc/apache/ nagic

Header append Vary User-Agent env=!dont-vary
I ncl ude et c/apache/ extral httpd- npm conf

I ncl ude etc/apache/ extral httpd-1anguages. conf
I ncl ude et c/apache/ extral httpd-defaul t.conf

With this simple config any host can serve static content at the very least. If it's not supposed to do any more than that, it will do it without any kludge. This
is all it needs to perform the task.

Frontend

include base config

I ncl ude /opt/es/etc/apache/ httpd. conf

I ncl ude /opt/es/etc/apache/ extral httpd-proxy. conf
I ncl ude /opt/es/etc/apache/ extral httpd-defl ate. conf
I ncl ude /opt/es/etc/apachel/ extral httpd-cache. conf
only the proxy does Custonioggi ng!

I ncl ude /opt/es/etc/apache/ extral httpd-Iog. conf

listen to U D

Li sten 80

Li sten 443

User www

G oup www

supply PID and lock file
PidFil e "/var/opt/es/apache/ proxy/ proxy. pi d"
LockFil e "/var/opt/es/ apache/ proxy/ proxy.| ock"

ErrorLog "/var/opt/es/ apache/ proxy/error_| og"
Custonlog "/var/opt/es/ apache/ proxy/access_| og" vhostconbi ned env=!dontl| og

Server Nane bor scht
NaneVi rt ual Host *: 80

<Virtual Host *:80>
Server Nane esotericsystens. at: 80
ProxyPass / http://127.0.0.1: 8001/
ProxyPassReverse / http://127.0.0.1: 8001/
</ Vi rt ual Host >
<Virtual Host *:80>
Server Nane onfzd.tld: 80
ProxyPass / http://127.0.0.1: 8002/
ProxyPassReverse / http://127.0.0.1: 8002/
</ Vi rt ual Host >
etc...
SSL VHosts:
I ncl ude /opt/es/etc/apachel/ extral httpd-ssl.conf
<Virtual Host 1.2.3.4:443>
Server Nane insecure. org: 443
Request Header set X_FORWARDED PROTO ' htt ps'
SSLENngi ne On
SSLCertificateFile "/opt/es/etc/certs/server.insecure.org.cert"
SSLCertificateKeyFile "/opt/es/etc/certs/private.insecure. org. key"

ProxyPass / http://127.0.0.1: 8003/
ProxyPassReverse / http://127.0.0.1: 8003/
</ Vi rt ual Host >
etc..

We'll skip the explanation of the obvious, and come straight to the Cust ormlLog. We only log in the front-end. And even here, we only have one Cust onlog
, effectively reducing the number of open handles.

You might notice the use : 80 in the Ser ver Nare, this has proved to be a workaround for some applications, wel'll see more of this in the backends.
In {ProxyPass} use {{di sabl eruse=on as a workaround if you're affected by PR#45362

We can also use the frontend as SSL Terminator, leaving the backend to concentrate on it's real business, not on encryption.

Backends

Everything can be a backend. Even though in the above example I've only shown htt p: //
for Pr oxyPass, this doesn't keep you from running mongrels, or Tomcats (and thus to use aj p: / /') in the backend.

As we're concentrating on Apache HTTPd, we'll show some examples with that, as well as it's peripherals.

Base Config

https://issues.apache.org/bugzilla/show_bug.cgi?id=45362

All backends have a certain config style in common, and we'll first show that (from a template) to outline the basic idea:

include base config

I ncl ude /opt/es/etc/apache/ httpd. conf
listen to U D

Listen 127.0.0.1: U D

User tenplate.tld

Goup tenplate.tld

Server Nane tenplate.tld

include other useful stuff:
I nclude /opt/es/etc/apache/ extral/httpd-nultilang-errordoc. conf
I ncl ude /opt/es/etc/apache/ extral httpd-php. conf

supply PID and lock file

PidFile "/var/opt/es/apache/tenplate.tld/pid"
LockFil e "/var/opt/es/apache/tenplate.tld/l ock"
ErrorLog "/var/opt/es/apache/tenplate.tld/error_|og"

<Directory /srv/web/tenplate.tld>
Options +Milti Vi ews
Al low fromAll
Al'l owOverride None
</Directory>

NanmeVi rt ual Host 127.0.0.1: U D

I ncl ude /opt/es/etc/apache/ vhosts/tenpl ate.tld/ ww httpd. conf
Maybe I nclude sonme nore (sub domains...)

The baseconfig defines a User and a G- oup, our convention is to name it same as the Ser ver Nane. In the Li st en directive we see that this convention
is further translated to listening to this user's UID.

We have one ErrorLog per domain, but if you like to log per vhost, you can of course change it.
We then define some sane settings for <Di r ect or y> where our vhosts will be located, start off name-based vhosting and start including vhosts.

Before looking into the vhosts, I'd like to dwell on the subject of structuring websites. We've chosen a rather simple setup:

/srv/web/onfzd.tld
[-- www
[| -- htdocs
| | -- session
["-- tnp
-- intra
| -- htdocs
| -- session
o tnp

Discussing whether or not it's a good idea to have the default vhost be www. is moot. It's just a convention, you can name it whatever you like.

Putting each domain in one folder, and each of it's subdomains in a sub-folder thereof. This organization eases the structuring of configurations, the
separation of privileges and also enables you to interface with other daemons such as an OpenSSHd.

We also see here a sessi on and at np directory. More on this soon!
The VHosts
We'll be using the same vhosts as in the front-end example to gradually increase complexity and show different aspects of the configurations.

Simple

The most simple of vhosts serves static content and looks like this:

#

<Virtual Host 127.0.0. 1: 8001>

ServerNane http://esotericsystens. at: 80

Server Al i as www. esot eri csyst ens. at

Docunent Root "/srv/web/ esotericsystens. at/ww/ ht docs"
</ Vi rt ual Host >

Note that again we're using htt p: / / esot eri csyst ens. at : 80 as Ser ver Nane, this is very important for Redirects!

Also some applications take this as a hint where they're really running on, because not many applications bother to check X-Forwarded-For...

PHP

PHP is not to be trusted. However running it in safe-mode is just a pain. As we've already taken care of privilege separation, we'll now go a step further
and cut it off from the rest of the world using open_basedi r.

But instead of sharing a common / t np/ for sessions and uploads, we separate those as well, as already hinted by the folder-structure:

<Virtual Host 127.0.0. 1: 8002>
Server Nanme http://onfzd.tld: 80
ServerAlias ww. onfzd. tld
Docunent Root "/ srv/web/onfzd.tld/ ww htdocs"
php_admi n_val ue open_basedir /srv/web/onfzd.tld/ ww :/opt/es/share/pear/
php_adm n_val ue session. save_path /srv/web/onfzd.t|d/ ww sessi on/
php_admi n_val ue upload_tnp_dir /srv/web/onfzd.tld/ www tnp/

</ Vi rtual Host >

In open_basedi r we have to include all the paths that our PHP application needs access. If for instance, you're serving a MediaWiki, your open_basedi r

line would look something like this:

php_admi n_val ue open_basedir /srv/web/onfzd.tld/ ww :/opt/es/sharel/pear/:/usr/bin/diff:/usr/bin/convert

This would allow PHP access to/ usr/ bi n/ di ff,butalsoto/usr/bin/diff3
and other variations thereof! Please refer open_basedir documentation for more information, or to the php.ini documentation in general.

Another directive we could use here, is PHPIniDir. It would enable us to have an unique per-domain (! Not per-vhost!) php. i ni .

Complex

This example shows our SSL VHosts, it includes a sample for configuring mod_passenger as well as authentication:

LoadModul e passenger _nodul e /var/lib/gens/ 1. 8/ gens/ passenger - 2. 2. 2/ ext / apache2/ nod_passenger. so
Passenger Root /var/lib/gens/ 1.8/ gens/ passenger-2.2.2

Di sabl e Passenger in Server Context, we'll only enable it where needed

Passenger Enabl ed of f

<Virtual Host 127.0.0. 1: 8003>
ServerNane http://insecure.org: 443
Server Al i as www. i nsecure. org
Docunent Root "/ srv/web/insecure. org/ ww ht docs"

Rai | sEnv production

Rai | sBaseURl /projects

<Location /projects>
Passenger Enabl ed on

</ Locati on>

<Location />
Requi re valid-user
Aut huserfile /srv/web/insecure.org/ww .insec_user
Aut hnanme " Aut hori zed Access Only."
Aut ht ype basic
</ Locati on>
</ Vi rtual Host >

http://esotericsystems.at:80
#
http://www.php.net/manual/ini.sect.safe-mode.php#ini.open-basedir
http://www.php.net/manual/ini.list.php
http://www.php.net/manual/configuration.file.php
http://www.modrails.com/

Again the Ser ver Name is ht t ps: / /i nsecur e. or g: 443. Because even that doesn't help much with some applications (Redmine in this case), we set:

Request Header set X_FORWARDED PROTO ' htt ps'

in the frontend (because | thought it's a more appropriate place) as suggested by their FAQ.
As the comments suggest, we disable mod_passenger for the Server Context. We only want it where we need it, in this case in <Locati on / proj ect s>.

And finally we can see that authentication requests can be required from the backend. The frontend will transparently put it through to the clients browsing
your website.

On the otherhand, if you have a backend which doesn't know how to deal with authentication, but needs protection, you can do the authentication in the
frontend.

Automation with mod_macro

https://insecure.org:443
http://www.redmine.org/
http://www.redmine.org/wiki/1/FAQ#Why-does-Redmine-use-http-links-when-I-want-it-to-use-https-links-in-Apache-SSL

	ExtendingPrivilegeSeparation

