
AvalonFortressDesignDocs
Fortress Design Docs
Fortress has two design goals: facilitate heirarchical containers and take management functions outside of the . The critical path is the code critical path
execution path that is required to find and use a component. Fortress assumes that the developer has explicit knowledge of his domain--which Fortress
itself would never have any knowledge of. It also assumes that there is one root container, although it does not force that upon the developer.

Asyncronous Management

Due to the long startup times of certain components like the ECM based code suffered from slowness. The problem was also DataSourceComponent
made worse by the delayed loading and running of components. Components would only be instantiated when they were first looked up--which made
problems for components that needed to be started immediately.

Fortress makes use of the Event package's so that all components can be started up immediately, but it is done in the background. CommandManager
That means that components are still starting while Fortress is ready to work. If a component hasn't been started yet before it is needed, then Fortress will
make sure it starts before it turns over the requested component. It will also make sure no component gets started twice.

All component pool sizing and management is done by background threads so that as Fortress responds to requests for components, it manages
resources without adding that cost to the client code. That means the critical path (the code that actually does the work of the system) is not delayed
unnecessarily.

Hierarchical Containers

Part of the design concept for Fortress heirarchical containers is to use a to make sure all the necessary services are set up and ContainerManager
running. For example, the Fortress container needs a --so the checks to see if it is already set up and uses it. That CommandManager ContainerManager
way we can have one Container that has one or more that all use the kernel level services of the parent container.ContainerManagers

The kernel level services are: , , and . The actual setup and configuration of these CommandManager InstrumentManager LoggerManager ThreadManager
services are done using a Context. The choice for the Context object was a conscious decision because we didn't want to extend the objects in a
proprietary manner (LoggerManageable, etc.) like the ECM did. By passing the kernel services in the context, the kernel services can be forwarded to any
child containers.

To assist in the setup of the Context, Fortress uses a . The will either set up the context based on a Context passed in, ContextManager ContextManager
or from a default context. Once the assists the to set up any missing kernel services, you can get the Container from ContextManager ContainerManager
the and start using it.ContainerManager

Why Not Set Up a Standard Container Interface?

Each domain has its own needs. For instance, Cocoon is based on a request/response processing model. Component based tools are based on a useage
model. Swing based Apps are based on other models. There is no one size fits all solution, and Fortress can be used in all of these solutions. As an
interim solution, the does have one public method exposed: getServiceManager().DefaultContainer

Why Not Use a Central Kernel?

This was actually planned in a future release. There are some issues to work out with a central kernel though. Those issues include how to detect and set
up sub-containers, how to make sure the container instance you want is set up instead of the default version, etc. In essence, what is needed is meta

. Meta information is information about the container heirarchy and the components involved. In the future Avalon Container: Merlin release, we information
will have a proper meta model.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

	AvalonFortressDesignDocs

