MerlinStandaloneExample

Merlin Standalone Example

This example shows how to start up Merlin in your own "main” class.

* Copyright 2004 Apache Software Foundation

* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in conpliance with the License.
* You may obtain a copy of the License at

* htt p: // ww. apache. org/ | i censes/ LI CENSE- 2. 0

* Unless required by applicable law or agreed to in witing, software
* distributed under the License is distributed on an "AS | S" BASI S,
* W THOUT WARRANTI ES OR CONDI TIONS OF ANY KIND, either express or
* inplied.

* See the License for the specific |anguage governing perm ssions and
* |imtations under the License.
*/

package tutorial;

inport java.io.File;
import java.util.Mp;

i nport org. apache. aval on. repository. Artifact;

i mport org.apache. aval on. reposi tory. provi der. Bui | der;

i mport org.apache. aval on. reposi tory. provi der. Factory;

i nport org. apache. aval on. reposi tory. provider.|nitial ContextFactory;

i mport org.apache. aval on. repository. provider.Initial Context;

i nport org. apache. aval on. reposi tory. mai n. Defaul t1nitial Cont ext Factory;
i mport org.apache. aval on.repository. Artifact;

| **

* An exanpl e of the enbedding of a merlin kernel inside a main
* nethod. The objective of the exanple is to denponstrate a
* sinple enbedded scenari o.
*/
public class Min
{
public static void main(String[] args) throws Exception
{
/1
/'l Create the initial context factory. This establishes
/1 the application group from which properties will
/1 be resolved. It also provides operations supporting
/1 custom zation of the application environnent.
/1

Initial ContextFactory initial =

new Defaul tlnitial ContextFactory("nerlin");
File hone = initial.getHomeDirectory();
initial.setCacheDirectory(new File(hone, "systeni));
Initial Context context = initial.createlnitial Context();

/1

/1 Using the initial context we can now |l oad any repository
/'l application using an artifact specification. Meta

/1 information associated with the artifact is used to

/'l construct the classloader that the application needs in
// order to execute.

/1

String spec = "artifact:merlin/nerlin-inpl#3.3- SNAPSHOT" ;
Artifact artifact = Artifact.createArtifact(spec);
Bui | der builder = context.newBuilder(artifact);

/1

/1 Wth the cl assl oader established we can go ahead and

/1 and get the application factory. The factory has al ready
/1 been paraneterized with defaults derived from properties
/1 based on the application group. W can provide

Il overriding values by setting the factory criteria to

/1 application specific values followi ng which we instantiate
/1 the application.

/1

Factory factory = builder.getFactory();
Map criteria = factory.createDefaultCriteria();
factory.create(criteria);

	MerlinStandaloneExample

