Controls ControlsThreadingModel
Controls Threading Model

Overview
What threading issues exist when using and writing controls?

Controls default to a single-threaded model — only one thread at a time will be executing code in a given control instance. This simplifies client and
authoring logic, but may result in excessive contention and sub-optimal performance. Sophisticated control developers may choose to implement logic to
handle multiple threads and concurrent execution.

Control Client
Client access to control instances (ie C_' 'ontrolBeans) is always thread-safe. Generated code + infrastructure manage concurrency issues:

Concurrent calls to operations may block (depending on control implementation and container)

Concurrent calls to get/set properties block as necessary to maintain coherency

Concurrent calls to other ControlBean generated methods and APIs are thread-safe.

Event handlers are client code! Infrastructure may result in multiple event handlers being invoked concurrently, client's responsibility to ensure
handlers are thread-safe.

Control Implementation

By default, control implementations delegate responsibility for thread-safety to the infrastructure, which provides a single-threaded environment for
implementations. This is semantically equivalent to marking every operation and event handler method with "synchronized".

Implementations may choose to explicitly manage thread-safety issues themselves by annotating the implementation class with the @hr eadi nghbdel
annotation:

package org. apache. beehi ve. control s. api . bean;

public @nterface Threadi ngvbdel

{
public enum Policy = { SINGLE THREADED, MULTI _THREADED }

public Policy value() default SINGLE THREADED;

If an implementation specifies @hr eadi nghbdel (Thr eadi nghbdel . Pol i cy. MULTI _THREADED) , the infrastructure will permit multiple threads to
execute concurrently on operations and event handlers. The implementation is expected to use standard Java concurrency mechanisms to guarantee data
coherency.

Open Issues

® |[s it necessary to talk about threading issues around client initializers / ControlBean instantiation? Seems straight-forward.

#
#

	Controls ControlsThreadingModel

