
Design NetUIRequestProcess
NetUI Request Process

Steps in an Action Request

PageFlowActionServlet.process()/ :AutoRegisterActionServlet.process()

Reinitialize reloadable class handler (bouncing a classloader if necessary). This is for a "reloadable page flows without redeploy" feature that isn't
fully implemented/supported currently.
Look up the appropriate Struts module based on the request module path (e.g., "/foo/bar" for "/foo/bar/someaction.do") and register the Struts

. Automatic module registration is where we look for the appropriate file under /_pageflow in the webapp module if it isn't already registered
classloader.

PageFlowRequestProcessor.process():

Run request interceptors (see).RequestInterceptorContext
Call back to the event reporter in the Servlet container adapter (see).ServletContainerAdapter
Initialize the Controls context.
Register the default URL rewriter

PageFlowRequestProcessor.processInternal():

Create a request wrapper that contains request-scoped values that our runtime uses. This is faster than sticking everything into attributes on the
request. From this point on, all request-scoped flags/values are accessed through this. See .PageFlowRequestWrapper
If this is a forwarded request, and if the "secure forwards" setting is enabled in beehive-netui-config.xml, allow the to do ServletContainerAdapter
a security redirect to switch to https, if necessary.
If the action was overridden by a request parameter (this is the mechanism for specifying the on , forward to the action <netui:button>
appropriate action URI.
If the request is for a page flow URI (.jpf), forward to the page flow's begin action.
Get the FlowController for this request (page flow or shared flow), and cache it in the request.
Look up or create any shared flows that are needed for the current request (based on the current page flow and any global shared flows defined
in beehive-netui-config.xml. puts a Map of shared flows (name -> instance) into the request at the ImplicitObjectUtil.loadSharedFlow
right spot.
Remove any current JavaServer Faces backing bean. We're in action processing now, and the user is no longer interacting with a JSF page.
Set up all the implicit objects for databinding (, etc.), through . pageFlow ImplicitObjectUtil.loadImplicitObjects

Struts (note that I'm only listing the bits of this that we override in :RequestProcessor.process() PageFlowRequestProcessor

processNoCache: In addition to the default Struts behavior of setting no-cache headers if it's configured in the Struts module, we set the
headers based on global settings in beehive-netui-config.xml. We also put a flag in the request that our uses to set no-cache headers if page filter
we forward to a NetUI page.
processMapping: This is the step that looks up which action to run, based on the request path. Here, we do a number of things:

If this is a request for a shared flow action mapping (), look up the action mapping in the appropriate shared-flow-name.action-name
shared flow.
If there is a form bean that was forwarded from another action, or returned from a nested page flow, look up a form-bean-specific action
mapping. This is part of support for overloaded actions (actions with the same name but that accept different form bean types).
Look up the action mapping in the current Struts module (for the current).FlowController
If the action still isn't found, try it in the (deprecated) Global.app module.

processRoles: If the user isn't in the correct role (as defined in annotations), throw an exception. if the user isn't logged NotLoggedInException
in, or if the logged-in user isn't in the correct role. This is different than default Struts behavior, which is to send an error UnfulfilledRolesException
on the response. The exception that we throw here can be handled by exception handling annotations in the page flow.
processActionForm: We deal with two things here beyond default Struts behavior:

If there is a form bean that was forwarded from another action (or returned from a nested page flow), we use that instead of creating a
new instance.
If the current action has the attribute set in its annotation, then we get/set the page flow controller's member variable useFormBean
which was named.

processPopulate: This is where all of our databinding (writing values based on request parameters) takes place. Obviously a lot more here
than there is in Struts.
processActionCreate: We simply create a that delegates to this request's , which we've already FlowControllerAction FlowController
looked up and cached. As mentioned above, the may be a page flow or a shared flow.FlowController
processActionPerform:

Run before-action methods on any registered action interceptors. See .ActionInterceptor
Execute the action.
Run after-action methods on any registered action interceptors.

processForwardConfig: This just contains our custom logic for forwarding/redirecting to a URI.

Back in :PageFlowRequestProcessor.process()

If this is the end of a series of forwarded requests, apply changes in the . See for more info.StorageHandler DeferredSessionStorageHandler
Uninitialize the Controls context.
Call back to the event reporter in the Servlet container adapter (see).ServletContainerAdapter
Execute any post-intercept code in registered request interceptors.

http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/interceptor/request/RequestInterceptorContext.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/ServletContainerAdapter.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/internal/PageFlowRequestWrapper.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/ServletContainerAdapter.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/NotLoggedInException.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/UnfulfilledRolesException.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/internal/FlowControllerAction.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/interceptor/action/ActionInterceptor.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/handler/StorageHandler.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/internal/DeferredSessionStorageHandler.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/ServletContainerAdapter.html

Steps in a Page Request

PageFlowPageFilter.doFilter():

If we decided during an earlier action request that the response shouldn't be cached, set the no-cache headers.
Call back to the event reporter in the Servlet container adapter (see).ServletContainerAdapter
Initialize the Controls context.
Register the default URL rewriter
Ensure that the right Struts module is registered and selected in the request, for use by the tags.
Look up or create any shared flows that are needed for the current request (based on the current page flow and any global shared flows defined
in beehive-netui-config.xml. puts a Map of shared flows (name -> instance) into the request at the ImplicitObjectUtil.loadSharedFlow
right spot.
Make sure the current page flow () is set up for the request. Unless an earlier action request specified that we should stay in PageFlowController
the current page flow's module, we'll look up the appropriate page flow based on the request URI.

PageFlowPageFilter.runPage():

Check to see if there are too many concurrent requests to the same page flow. This prevents an attack that takes advantage of the fact that we
synchronize requests to the same page flow. If there are too many concurrent requests, send an error on the response; otherwise, increment the
request count.
Synchronize on the current page flow controller instance.
Set per-request state on the controller, like current-request and current-response. This is so these methods can be used if the page databinds to
getter methods in the controller.
Call back to the current page flow controller (– this is internal, for now).beforePage
Run the page
Clear per-request state on the controller.
Decrement the request count on the controller.

Back in :PageFlowPageFilter.doFilter()

Uninitialize the Controls context.
Call back to the event reporter in the Servlet container adapter (see).ServletContainerAdapter
If this is the end of a series of forwarded requests, apply changes in the . See for more info. StorageHandler DeferredSessionStorageHandler

Future Directions

These two processes (Action Request and Page Request) are ideal candidates for something like Chain, which is used by Struts 1.3. Each step could be
turned into a chain command, and the process could be configured in Chain's XML config. As you can see, many of the steps are shared by both Action
and Page requests.

http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/ServletContainerAdapter.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/PageFlowController.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/ServletContainerAdapter.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/handler/StorageHandler.html
http://beehive.apache.org/docs/nightly/apidocs/classref_netui/org/apache/beehive/netui/pageflow/internal/DeferredSessionStorageHandler.html

	Design NetUIRequestProcess

