ConnectionPooling

Installing a JDBC driver

Consult the database documentation to find out where an appropriate JDBC driver can be obtained for the database server that'll be used with Cocoon. Or
see list of drivers]. Sun also mantains a [http://industry.java.sun.com/products/jdbc/drivers.

Drivers are usually packaged as zip or jar files. Installation is simply a matter of ensuring that the archive containing the classes is correctly configured in
the CLASSPATH.

There are several ways to achieve this:

® Edit the startup script for the application server, and ensure that it's CLASSPATH contains the archive

® For Tomcat, the jar files can be placed in $TOMCAT_HOME/server/lib. Tomcat will automatically add all jar files in this directory to it's
CLASSPATH. However it has problems reading zip files, so you may need to rename the file.

® Copy the archive to the $COCOON_HOME/WEB-INF/lib directory

® |nstruct Cocoon to load the additional zip/jar files from anywhere in the file-system using the ext r a- cl asspat h configuration parameter in the

$COCOON_HOME/WEB-INF/web.xml file.

The ext r a- cl asspat h parameter is normally commented out. Simply remove the comments, leaving the following:

<init-parane
<par am nane>ext r a- cl asspat h</ par am nane>
<par am val ue>WEB- | NF/ ext r a- cl assesl: /[YOU- ABSOLUTE- PATH TQ / own. j ar </ par am val ue>
</init-paran>

Note that the absolute path to the database driver should be specified.

The recommended method is to simply add the drivers to the $TOMCAT_HOME/server/lib directory. It's the simplest option and avoids the need to
maintain a configuration file. However if you have several web applications running under Tomcat that use slightly different versions of the drivers, e.g. to
access different versions of the database server, place the files in the $COCOON_HOME/WEB-INF/lib directory instead.

Loading the Driver

The classes for the selected JDBC driver must be loaded prior to connections being created. This allows the driver to automatically register itself with the
DriverManager class so that it can be properly used to create connections.

To ensure that the appropriate classes get loaded when Cocoon starts, the class name for the JDBC driver should be added to the | oad- cl ass
parameter in the $COCOON_HOME/WEB-INF/web.xml configuuration file.

<i ni t - paranp
<par am name>| oad- cl ass</ par am nane>
<par am val ue>
<!-- For |BM WbSphere: -->
comibm servl et. cl assl oader. Handl er

<!'-- For JDBC-ODBC Bridge: -->
sun. j dbc. odbc. JdbcGdbcDri ver

<!-- For Interbase DBMS: -->
interbase.interclient.Driver
</ param val ue>

</init-paran>

Classes should be referenced using their fully-specified names. Consult the driver documentation for the correct class name.

Creating a Connection Pool

Connection pools, like many other aspects of Cocoon are configured using the cocoon. xconf XML configuration file. (See ConfiguringCocoon for more
information on performing other tasks).

Datasources such as database connections are configured within the dat asour ce element as follows:

http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/
https://cwiki.apache.org/confluence/display/COCOON/SpecificDatabaseConnection
http://industry.java.sun.com/products/jdbc/drivers
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
https://cwiki.apache.org/confluence/display/COCOON/ConfiguringCocoon

<dat asour ces>

<j dbc nane="pool - nane" >
<pool -control ler mn="1" max="5"/>
<aut o-conmi t >t rue| f al se</ aut o-conmmi t >
<dbur | >JDBC- connecti on-string</dburl >
<user >dat abase- user nane</ user >
<passwor d>dat abase- passwor d</ passwor d>
</ j dbc>

</ dat asour ces>

Note that because connection pools are configured in the cocoon. xconf config file, the application server must be restarted to alter these configuration
parameters. Unlike the Sitemap which can be re-loaded if it changes, the main configuration file is only read when Cocoon initialises.

The elements in the above examine have the following responsibilities:

® j dbc - indicates a JDBC datasource. Must be named. This name is used to refer to the connection pool in XSP pages, etc.
® dburl —the JDBC connection string, just as would be provided to

Driver.createConnection(...);
® user - the username of the database account to which the connections will be made.
® passwor d —the password for the account

® aut o-conmi t — whether connections are set to automatically commit or not. The defaultis t r ue

There is one additional set of properties which instructs Cocoon on how many database should be created when the application is started, etc. These are
attributes of the pool - control | er element:

® m n —the minimum number of connections to maintain in the pool. This will be the number created when Cocoon initialises
* max — the maximum number of connections that the pool should ever contain. A pool will grow to this maximum limit under heavy usage, but will
shrink (as far as mi n) if the connections become unused

® or adb - this attribute, which can be setto t r ue or f al se only, is only required when creating connections to Oracle databases. It will ensure
that the test to see if the connection is still valid.

Checking that the Pool is initialised
It's possible to check that the pool is intialised correctly in several places.

Firstly the Cocoon r oot . | og file will contain a log entry similar to the following:

(Unknown- URI') Unknown-t hread/ CocoonServlet: Trying to |oad class: org.hsqldb.jdbcDriver

If there is a stack trace following this entry, for example a O assNot FoundExcept i on, check that the CLASSPATH has been configured correctly.

® Check the logs for SQLExceptions. These may indicate that the classes have not been correctly loaded, or that the connection parameters (the
JDBC connect string, username, password, etc) are incorrect.

Getting a Connection
Once a connection pool has been configured, it's possible to obtain connections from it, e.g. in a custom Action, using the following code snippet:

The class must implement the ((Composable)) interface, and is passed the Conponent Manager automatically. The DataSource can then be cached for
later use

Conponent Sel ector selector =

(Conponent Sel ect or) nanager. | ookup(Rol es. DB_CONNECTI ON) ;
Dat aSour ceConponent dat asource = (Dat aSour ceConponent)
sel ector. sel ect ("ny_pool ");

The above code, or its expanded form in the Apache Cocoon docs, did not work for me. Specifically, importing or g. apache. cocoon. Rol es failed. It
does not seem to exist anywhere in Cocoon. | have Cocoon 2.1.5.1. --JasonStitt, 2004-07-17.

| found this alternative, presented here in skeleton form:

https://cwiki.apache.org/confluence/display/COCOON/Sitemap

i nport java.sql.Connection;
i mport java.sql.SQLException;

/'l These are fromthe jar aval on-franework-api-VERSION.jar, in Cocoon's WEB-INF/Ilib
i mport org. apache. aval on. f ramewor k. conponent . Conponent Excepti on;

i nport org. apache. aval on. f ranewor k. conponent . Conponent Manager ;

i mport org.apache. aval on. f ramewor k. conponent . Conponent Sel ect or ;

i mport org.apache. aval on. f ramewor k. conponent . Conposabl e;

/1l This is fromthe jar excalibur-datasource-VERSION.jar in the sane directory
i nport org. apache. aval on. excal i bur. dat asour ce. Dat aSour ceConponent ;

public class CLASSNAME i npl ements Conposabl e {
Dat aSour ceConponent dat asource = nul | ;

public void conpose(Conponent Manager manager) throws Conponent Exception {
Conponent Sel ect or dbsel ector =
(Conponent Sel ect or) nanager. | ookup(Dat aSour ceConponent . ROLE + "Sel ector");
dat asour ce = (Dat aSourceConponent) dbsel ector. sel ect ("NanmeOf Pool "); //name as defined in cocoon.
xconf

}

/'l You can then use datasource. getConnection() to get a java.sql.Connection object.

Of course, it can also be a good idea to separate your data-access object from the Avalon framework. For example, create a go-between class that gets a
connection from Cocoon's pool and exposes it as a generic Connection object. If your DAO does not depend on Cocoon, then you can use it easily in other
contexts, whether those are other apps or unit tests.

Using the Pool in flowscript

From Flowscript, you can instantiate a Java object that uses the connection pool, use the pool directly, or even query a database without using the pool.
The petstore example, placed in sanpl es/ bl ocks/ pet st or e in recent Cocoon versions, accesses the database in Flowscript. It demonstrates both
using the pool and connecting to the database directly.

The bulk of the code handling database connections is in PetStorelmpl.js. To see the definition of the Database object used, you need the source code to
Cocoon. You can find the imported Database.js (and the files it calls) at:

cocoon- 2. 1. 4/ src/ bl ocks/ pet store/javal or g/ apache/ cocoon/ conponent s/ fl ow j avascri pt

Using Java data-access objects in Flowscript
This assumes that you have created a Java object that implements Composable, as described in the previous section.

In Flowscript, you can use the cocoon.createObject() method to instantiate a class that implements an Avalon interface, such as Composable, but is not
registered as a component. For example:

var dataCbj ect = cocoon. createObj ect (Packages. package. Dat aCbj ect) ;

Note that this doesn't seem to work if your constructor needs any parameters. But you also cannot just instantiate the class using new, because then conp
ose() and any other functions implementing the Avalon component interfaces will not be called.

Connecting to the database pool in Flowscript

It's fairly simple:
var sel ector = cocoon. get Conponent (Packages. or g. apache. aval on. excal i bur. dat asour ce. Dat aSour ceConponent . ROLE +
"Sel ector");

var datasource = sel ector. sel ect (" NameCf Pool ") ;
var connection = datasource. get Connection();

It is also wise to check out the mailing lists; you just may find your solution waiting for you ‘<

	ConnectionPooling

