
GT2003Stefano
Talk by Stefano Mazzocchi at the 2003 GetTogether: How I see Cocoon - a visual journey.

Raw notes taken collaboratively during the talk.

Stefano takes the stage
Says he could not come last year because of ApacheCon.

Shows an unusual presentation, in the very good sense, very graphical, mostly photos and short comments.

A written report will not do justice to this talk. You had to be there.

What is Cocoon:

Cocoon is designed for People, not machines - empower all the different kinds of people who work on projects
Guided by Open Standards (but not trapped by them)
Free to make mistakes, in public
Creative & original, not afraid to copy good stuff
Looks to the past for inspiration or warnings

Like GOTO was found harmful in the past, finite state machines for web apps might be the next thing that we find harmful...
No fear of innovation
Balance, between innovation & compatibility

It will not collapse beneath your feet, because we need it to work too
Modular, adaptable, etc. yet solid
Care for details

It's ok to take six months to polish the sitemap contracts
Self-organising organism

Concepts

"Creativity is making the complicated simple" - Charles Mingus
Separation of concerns - simple yet very powerful concept

Seperating overlaps in responsibilities
Allow people to do what they do best and leave the rest to others
Pyramid of contracts
Concern Islands, kept seperate

Management
Logic
Content
Style

Design

"To create, one must first question everything" - Eileen Grey
Architecture of Cocoon (shows diagram)

Many different web clients (browser, PDA, cell phone, TV, agent, etc)
Try doing this in JSP
Back-end: web services, data sources, content repositories
Two interfaces:

Command Line
Servlet

(Stefano shows another diagram)

Cache is essential to performance
Pipeline components can allow you to create a complete site without writing a single line of Java code

Blocks (Another diagram)
Cocoon 2.1 without Blocks is limited, we have distribution problems with it as everything possible has to be contained.
(Real) Blocks will be components at the application level
User connects to the Block Deployer (command-line, GUI, web-based tool...time will tell) to select the required Blocks for a given
application
Block deployer can automatically download required (dependant) blocks at runtime
Cocoon keeps seperation between blocks that are not dependent (allows easy versioning and hot-deploy scenarios)
Possible scenario: install a complete web site as a Block
Rely on dependencies between Blocks

Blocks wiring (Diagram)
Connect website paths to specific blocks
Connect 'Behaviours' (Interfaces) automatically, hot deployable, polymorphically
Extension mechanism, so you can overlaod a Block from another one (whether this is logic, content or style)

Blocks will become available in Cocoon 2.2
The design is completed

Please start planning to use them

Flow (Another diagram)

Continuations are not new, they have been use on the web as early as 1995 in Lisp and Scheme (Paul Graham)
A logic engine, connected to the SiteMap
Based on JavaScript (current implementation)
Took the ideas of Continuations from Scheme

Pauses the flow script while the user fills in their data
Not something that has normally been possible for web programming environments
(Discussion on why FSM is not good)
Very fast prototyping, increases productivity
Pipeline Teeing with Flowscript (Another diagram)

processPipelineTo ()
Your FlowSript can use a Pipeline to output to a Source (Disc etc.)

Stefano gives a very clear explanation of Flowscript with Continuations - looks like today might be the Day of the Web Application for many Cocooners

Diagram 6 shows how the results of a pipeline can be saved as well as being sent (maybe after further processing) to the client.

Sitemap Components

Now we're into 'normal' stuff, explaining generators, transformers, serializers etc...

New for 2.2 will be "pipeline snippets", assembled into "virtual components"

Several components put together, that can be reused elsewhere in your sitemap, as if it were a single component.
Virtual Generator: Generator followed by optional Transformers
Virtual Transformer: One or several Transformers
Virtual Serializer: Optional Transformers followed by a Serializer

Goes on to describe the current components: Readers, Selectors.

Map:call: call resources, (javascript) functions or continuations.

Redirect to a different URL. Mount a different sitemap (isolating parts of a project, or teams etc.)

Sitemap notation

"Example sitemap" page shows an overview Stefano's notation for the sitemap - it would be good for Cocoon documentation or articles writers to
standardize on a notation, this one looks good!

Brings talk to an end, with a famous photo of himself as the "evil fairy"

Audience questions:

Someone talks about MIT's haystack project (), which is supposed to become the killer app of the web (smiles all http://haystack.lcs.mit.edu/
around). Did we look at this for inspiration?

Not really says Stefano, but we're always looking at similar projects for inspiration.

(Gianugo on chat) "a huge bloated desktop replacement but with a few nice concepts"

http://haystack.lcs.mit.edu/

	GT2003Stefano

