
1.
2.

IntegrateAServlet
This How To describes the following:

invoking a servlet that runs outside Cocoon (e.g. in a separate webapp) and process the results in a Cocoon pipeline.
add an existing custom servlet to Cocoon, and similarly process its output

This is a common requirement if you have an existing servlet that generates XML data using custom logic and you'd rather not have to turn it into a Generat
 or an page.or XSP

Invoking A Servlet

Invoking a servlet, or indeed any other kind of web accessible resource (e.g. a CGI app) from a Cocoon is simple: you just provide its URL to a Pipeline Ge
.nerator

If you servlet (or CGI) produces XML then just use the default XML generator:

<map:pipeline match="...">
 <map:generate src="http://my.server.com/path/to/my/servlet"/>
 <!-- rest of pipeline to process results -->
</map:pipeline>

If your servlet produces HTML then you may want to use the HTML Generator instead, as this uses to produce well-formed output. Simply add a JTidy typ
 attribute to the above example.e="html"

If you need to pass parameters through to the servlet, then you can use the Request Parameter Action as follows:

<map:pipeline match="...">
 <map:act type="request">
 <map:parameter name="parameters" value="true"/>
 <map:generate src="http://my.server.com/path/to/my/servlet{requestQuery}"/>
 </map:act>
 <!-- rest of pipeline to process results -->
</map:pipeline>

Notice that the query string is passed through to the servlet by adding the sitemap parameter, created by the , to the end of the requestQuery Action
URL.

Adding a Servlet to the Cocoon Webapp

Add the Classes

Firstly you need to ensure the classes for your application are available from the . You can either put the classes in CLASSPATH $COCOON_HOME/WEB-INF
 or package it up as a jar file and place it in /classes $COCOON_HOME/WEB-INF/lib

Declare the Servlet

You then need to declare that the servlet should be loaded into the Cocoon webapp by editing
. You'll need to add XML similar to this:$COCOON_HOME/WEB-INF/web.xml

<servlet>
 <!-- name used to refer to servlet -->
 <servlet-name>servletName</servlet-name>
 <!-- fully-specified class name of servlet -->
 <servlet-class>com.server.my.ServletClass</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>servletName</servlet-name>
 <!-- the URL path at which the servlet is mounted -->
 <url-pattern>/internal/myServlet</url-pattern>
</servlet-mapping>

This is all standard Java web application config, so consult a reference if you have problems.

https://cwiki.apache.org/confluence/display/COCOON/Generator
https://cwiki.apache.org/confluence/display/COCOON/Generator
https://cwiki.apache.org/confluence/display/COCOON/XSP
https://cwiki.apache.org/confluence/display/COCOON/Pipeline
https://cwiki.apache.org/confluence/display/COCOON/Generator
https://cwiki.apache.org/confluence/display/COCOON/Generator
https://cwiki.apache.org/confluence/display/COCOON/JTidy
https://cwiki.apache.org/confluence/display/COCOON/Action

When you reload the Cocoon webapp (e.g. restart Tomcat) your new servlet will be accessible from ./internal/myServlet

Integrating the Servlet

Integrating the servlet into your pipeline then follows the procedure outlined at the start of the document. For example you might reference it as:

<map:pipeline match="some/url/path/foo.xml">
 <map:generate src="/internal/myServlet"/>
 <!-- rest of pipeline to process results -->
</map:pipeline>

The key thing to understand is that your servlet has to be mounted at a URL (configured by) before it can be called from a pipeline.web.xml

This How To is basically an edited form of an exchange that took place between Kavitha Ramesh and Everett (Skip) Carter on the mailing cocoon-users
list. kavitha that the advice was correct.confirmed

The only changes have been to present the information in a more readable form, and some tweaking of the examples.

http://archives2.real-time.com/pipermail/cocoon-users/2002-August/020933.html

	IntegrateAServlet

