
SimpleModProxy
Intro
ApacheModProxy is an excellent, in-depth article about why and how to use Apache HTTPD as a reverse-proxy front-end to Cocoon applications. That
article is also rather , so I'll summarize it here and encourage you to read it if you're interested in the long version.long

So, by way of summary... you want to run Apache in front of your servlet container. The reasons:

"Zero port 80 downtime" — the user gets some page served, even if the application is down (rather than having their browser say, "could always
not connect");
Much faster serving of static resources (e.g. images, CSS, client-side javascript, flash pieces etc.);
Security — Apache can start as root, bind to (the privileged) port 80, and then switch to a non-privileged uid.

There's another compelling reason not discussed in , which is the ability to run multiple servlet engines. I'll discuss that later, but for now, ApacheModProxy
let's get right to the good stuff!

The article gives several examples, starting from a simple set-up and working its way up to a gnarly, hairy one, just to show how ApacheModProxy
elaborate it can be. You might be left with the impression that it really needs to be that involved. Beyond recapitulating the reasons for running Apache in
front of Cocoon, the purpose of this article is to show how simple it can be.

A simpler way
A common feature of the examples in is that they all set DocumentRoot to the path of the webapp root directory. Then, some measures ApacheModProxy
are taken to prevent the client from accessing the contents of WEB-INF/ (in accordance with the servlet spec). But that's really not all we want to do. We
really don't want the sitemap, XML source documents, XSLT stylesheets, etc. accessible to the client, either. Fortunately, there's a really simple way to
sequester all the static content and set things up so only the static content is directly visible to Apache.

My standard project layout includes this structure:

httpd/
 static # symlink to... ----
webapp/ |
 static/ <----------------------

...and the DocumentRoot is set to /httpd, not to the webapp directory.project_root

All the static content is contained in . That way,static

Apache can serve it up with one simple rule, instead of a bunch of RewriteRules matching filename suffixes, etc.;
Cocoon can still serve up all the static content without Apache, so I can do development on my laptop where I do not want to have to screw
around with Apache — I just point my browser at localhost: and talk directly to the Cocoon instance (see "Serving Static Content" below). port

So, all you might really need in your Apache configuration is

ProxyPass /static/ !
ProxyPass / http://localhost:8080
ProxyPassReverse / http://localhost:8080

httpd contains except for the symbolic link.nothing static

Multiple instances of Cocoon
Here's another reason run Apache in front of Cocoon: in production, it's a good idea to run each web application in a dedicated servlet container (Jetty is
well-suited to this approach). Benefits:

you can do things that require restarting the servlet container without affecting any other application
you can crash the JVM without affecting any other application
heavy load demands on one application don't (directly) affect applications running in other servlet container instances (i.e., on separate JVMs).

I use to start up (at boot time) and supervise all the Jetty+Cocoon instances (so that if one goes down, it's automatically restarted), and to log daemontools
jetty's console output (using).multilog

Serving Static Content
As I mentioned, I want to be able to do development on my laptop without Apache, and that means the Cocoon app has to know how to serve static
content by itself. Here's the sitemap snippet that does that:

#
#
#
#
http://cr.yp.to/daemontools.html
http://cr.yp.to/daemontools/multilog.html

 <!--
 ++ Static content
 -->

 <map:match pattern="static/**.css">
 <map:read src="{0}" mime-type="text/css"/>
 </map:match>
 <map:match pattern="static/**.js">
 <map:read src="{0}" mime-type="application/x-javascript"/>
 </map:match>
 <map:match pattern="static/**.gif">
 <map:read src="{0}" mime-type="image/gif"/>
 </map:match>
 <map:match pattern="static/**.jpg">
 <map:read src="{0}" mime-type="image/jpeg"/>
 </map:match>
 <map:match pattern="static/**.png">
 <map:read src="{0}" mime-type="image/png"/>
 </map:match>
 <map:match pattern="static/**.tiff">
 <map:read src="{0}" mime-type="image/tiff"/>
 </map:match>
 <map:match pattern="static/**.swf">
 <map:read src="{0}" mime-type="application/x-shockwave-flash"/>
 </map:match>

See for one approach to structuring the directory!SimpleContentModel static/

Author: MarkLundquist

https://cwiki.apache.org/confluence/display/COCOON/SimpleContentModel
https://cwiki.apache.org/confluence/display/COCOON/MarkLundquist

	SimpleModProxy

