
XfolioOpenOfficeGeneration

WHAT
STATUS
WHO
CHANGES
HOW
WHY

Forget
Forrest

REFERENCES
SEE ALSO

WHAT
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/xfolio/webapp/WEB-INF/classes/org/apache/cocoon/generation/SXWGenerator.java

Here is a regular Cocoon Generator for SXW Writer documents. OO becomes more and more a real world production text tool. The original OpenOffice
format is quite xml, except it is zipped, and could embed other resources (images and other media). This generator provides text informations, metadatas,
and enough styles to resolve some tagging from XSL.

STATUS
Tested on thousands of OO docs in production context, proposed as a Cocoon commit if someone wants it. All licence mentions could be let to Apache,
except author name and company.

WHO
[FG] FredericGlorieux http://www.ajlsm.com

CHANGES

2004-10-17:[FG] Implemented as generator

2004-06-30:[FG] Creation as a accheable XSP

HOW
Verify your XML catalog for resolution of entities. Default Cocoon Catalog here
src\webapp\WEB-INF\entities\catalog
have the declaration
PUBLIC "-//OpenOffice.org//DTD 1.0//EN" "open-office/dummy.dtd"OfficeDocument
where dummy.dtd is an empty file. This is enough to parse XML, but the file is not validate.

http://cvs.berlios.de/cgi-bin/viewcvs.cgi/xfolio/webapp/WEB-INF/classes/org/apache/cocoon/generation/SXWGenerator.java
#
https://cwiki.apache.org/confluence/display/COCOON/FredericGlorieux
http://www.ajlsm.com
#

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
 <map:components>
 <map:generators>
 <map:generator name="sxw" label="content" logger="sitemap.generator.sxw" src="org.apache.cocoon.
generation.SXWGenerator"/>
 </map:generators>
 </map:components>
 <map:pipelines>
 <map:pipeline>
 <map:match pattern="**.html">
 <map:select type="exists">
 <!-- OpenOfficeWriter -->
 <map:when test="{context-attr:xfolio.efolder}{1}.sxw">
 <map:generate type="sxw" src="{context-attr:xfolio.efolder}{1}.sxw"/>
 <map:transform src="transform/oo/oo2html.xsl"/>
 <map:serialize/>
 </map:when>
 </map:select>
 </map:match>
 </map:pipeline>
 </map:pipelines>
</map:sitemap>

WHY
OpenOffice Writer documents could be used like other XML documents as sources. To provide an HTML view or some other transformation, but also to
extract metadata on vast amount of documents. So, performances is an issue, a generator should be cacheable.

This was first implemented as an XSP, easy for testing, and for people to integrate in their cocoon apps, it's now a Cocoon generator, ready to be
commited in cocoon.

Fast performances test (thanks to profiler)

direct pipe cost ~10 ms
xinclude cost ~160ms
cinclude ~320ms
SXWGenerator cost ~200ms on first call, but is (~40 ms on second call) cached

Forget

default src="jar:myzip!myentry.xml" seems to load the file entry in memory, but never remember the changes (isnt'it the goal to load a class from
a jar one type ?)

Forrest

For now, the best solution is in Forrest, using the new zip protocol from cocoon, able to resolve things like src="zip://content.xml@{folder}/test.sxw". This is
a part of the trick. The problem of their solution is to use a cinclude transformer, which is not cacheable. You need to regenerate your aggregation each
time it is requested. This is not a big problem in Forrest context (essentially generate a site), but on a real life server...

Their solution looks like that

<map:generate src="transform/cocoon/dummy.xml"/>
<map:transform src="transform/cocoon/sxw2oo.xsl">
 <map:parameter name="src" value="{context-attr:xfolio.efolder}{1}.sxw"/>
</map:transform>
<map:transform type="cinclude"/>
<map:serialize type="xml"/>

The dummy.xml is only there because you need something to begin with pure cocoon. The job is done by the XSL, to write something like that.

#

<office:document xmlns:**>
 <c:include select="/*/*">
 <xsl:attribute name="src">zip://meta.xml@<xsl:value-of select="$src"/></xsl:attribute>
 </c:include>
 <c:include select="/*/*">
 <xsl:attribute name="src">zip://content.xml@<xsl:value-of select="$src"/></xsl:attribute>
 </c:include>
</office:document>

Problems are

an Xpath include is expensive (all document need to be loaded as DOM)
Cinclude (like Xinclude) haven't seem to be cacheable for me

You may say, try a ... I tried, and produce so much problems of validation that I stopped.<map:agreggate/>

REFERENCES
Forrest Open Office
XSPCaching
cacheable.xsp
XIncludeTransformer.java
ZipSourceFactory.java
ZipSourceFactory.java
JarProtocolExample
OpenOfficeGeneration

SEE ALSO
cited by about xfolio about Open Office

<<FullSearch>
>

<<PageList(xfolio)
>>

<<PageList(office)
>>

http://cvs.apache.org/viewcvs.cgi/*checkout*/xml-forrest/src/core/context/forrest.xmap
http://wiki.apache.org/cocoon/XSPCachingWithCocoonHEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/cocoon-2.1/src/webapp/samples/xsp/xsp/Attic/cacheable.xsp
http://cvs.apache.org/viewcvs.cgi/*checkout*/cocoon-2.1/src/java/org/apache/cocoon/transformation/XIncludeTransformer.java
http://cvs.apache.org/viewcvs.cgi/*checkout*/cocoon-2.1/src/java/org/apache/cocoon/components/source/impl/ZipSourceFactory.html
http://cvs.apache.org/viewcvs.cgi/*checkout*/cocoon-2.1/src/java/org/apache/cocoon/generation/FileGenerator.html
http://wiki.apache.org/cocoon/JarProtocolExample
http://wiki.apache.org/cocoon/OpenOfficeGeneration

	XfolioOpenOfficeGeneration

