
1.

1.

2.

3.

Large number of documents HOWTO
Introduction

It is possible to include documents in a Lenya publication on even a modest server with 512MB of RAM. 30 000+
Yet some constructs make the default Lenya publication slow down enormously with that number of documents. This is because the hierarchy of
documents is kept in 1 single XML file: . And because the default Lenya publication is reading this file a lot of times, it gets sitetree.xml
incredibly slow, even with 10 000 docs.
In this HOWTO, we do not touch at the sitetree.xml concept, because changing it requires some more modifcations then the ones proposed here.
However, with some smaller adjustments (used cocoon profiling to see the bottlenecks)I I was able to speed up the Lenya default pub
enormously. I'm running it now with 30 000 documents very smoothly.

HOWTO (Lenya 1.2.4)
Java XML processing supports XML documents of 10's of thousands of nodes, yet
therefore the needs to be enlarged.default heap space

In Linux/tomcat (jetty probably also) set the environment variable :
JAVA_OPTS="-Xmx256m"
In Windows/tomcat, there is a GUI tool called "tomcat5w" where you can
set this option for the tomcat service (Maximum Memory Pool option) .

The main slow-down problem is that the whole sitetree is passed through 4 navigation pipes (breadcrumb, menu, tabs and search). This is not
really necessary, because generally, one only wants to see the root folders, the current document, its parents and its direct descendants. This is
why navigation in "Site" mode goes fast: it uses the 'SiteTreeFragmentGenerator'. A similar solution can be applied for the left navigation menu in
authoring mode. I created a Cocoon generator ('SelectiveSitetreeGenerator') which only generates the minimal tree to navigate from the currently
selected document (see Attachment). SelectiveSitetreeGenerator.java

You need to include the .java file into the right Lenya src folder: SelectiveSitetreeGenerator
 src/java/org/apache/lenya/cms/cocoon/generation/

Now we declare our generator in . Add to the generators list in front:src/webapp/sitemap.xmap

<map:generator name="sitetree-selective" label="content,data" logger="sitemap.generator.sitetree-
selective" pool-grow="2" pool-max="16" pool-min="2" src="org.apache.lenya.cms.cocoon.generation.
SelectiveSitetreeGenerator"/>

Now we can reference it in our navigation xmap ()src/webapp/lenya/navigation.xmap
replace our normal sitetree generator:

<map:generate type="sitetree">
 <map:parameter name="area" value="{2}"/>
</map:generate>

with our selective one:

<map:generate type="sitetree-selective">
 <map:parameter name="area" value="{page-envelope:area}"/>
 <map:parameter name="documentid" value="{page-envelope:document-id}"/>
</map:generate>

OK, we now only generate the sitetree that we need. Still, the sitetreeselective generator takes on a Pentium 4 / 2.4 Ghz about 200ms to fetch the
right components out of the sitetree.xml (30 000 nodes). Unfortunatly, in the current sitemap, this fetch occurs 4 times, which results in slowing
down every click to a new document which wasn't cached to about 1 second. This is because the "map:aggregate" construct does not cache the
first fetch of this sitetree-selective. The "cinclude" does, which speeds up the rendering of a page with about 600ms for every page you visit (when
sitetree was not cached after eg. move)!

Therefore, in your replace the part: publicaton-sitemap.xml

https://cwiki.apache.org/confluence/download/attachments/118165626/SelectiveSitetreeGenerator.java?version=1&modificationDate=1559827467000&api=v2
#

3.

4.

<map:aggregate element="cmsbody">
 <map:part src="cocoon://navigation/{2}/{3}/breadcrumb/{5}.xml"/>
 <map:part src="cocoon://navigation/{2}/{3}/tabs/{5}.xml"/>
 <map:part src="cocoon://navigation/{2}/{3}/menu/{5}.xml"/>
 <map:part src="cocoon://navigation/{2}/{3}/search/{5}.xml"/>
 <map:part src="cocoon:/lenya-document-{1}/{3}/{4}/{page-envelope:document-path}"/>
</map:aggregate>

with:

<map:generate src="../../content/util/empty.xml" />
 <map:transform src="xslt/custom/lenyaBodyCincludes.xsl">
 <map:parameter name="rendertype" value="{1}" />
 <map:parameter name="publication-id" value="{2}" />
 <map:parameter name="area" value="{3}" />
 <map:parameter name="doctype" value="{4}" />
 <map:parameter name="url" value="{5}" />
 <map:parameter name="document-path" value="{page-envelope:document-path}" />
 </map:transform>
<map:transform type="cinclude" />

You should copy the attached XSL file in "yourPUB/xslt/custom/" lenyaBodyCincludes.xsl
Note that for this caching to take effect you should make sure that the sitetree-selective pipe (in navigation.xmap) is cached ! On a
normal build this should be ok since the default pipe was defined to be caching (in sitemap.xmap).

Speeding up delete usecase. the looks through all the documents to find links to a document. If don't want to slow DocumentReferencesHelper
down the delete usecase (which looks for broken links in all documents !),

You should uncomment the part with the statements in DocumentReferencesHelper
 src/webapp/lenya/content/info/delete.xsp

See also the attached delete.xsp delete.xsp
(close the xsp:logic block after <parent-url> and comment out the rest of original logic:block)

Other xsp's that use the reference helper and which you may want to disable (called via usecase.xmap).

src/webapp/lenya/content/info/archive.xsp
src/webapp/lenya/content/info/deactivate.xsp
src/webapp/lenya/content/info/delete.xsp
src/webapp/lenya/content/publishing/referenced-documents.xsp
src/webapp/lenya/content/publishing/screen.xsp
src/webapp/lenya/content/scheduler/screen.xsp

Attached files
<<AttachList>>

https://cwiki.apache.org/confluence/download/attachments/118165626/lenyaBodyCincludes.xsl?version=1&modificationDate=1559827466000&api=v2
#
#
https://cwiki.apache.org/confluence/download/attachments/118165626/delete.xsp?version=1&modificationDate=1559827467000&api=v2

	Large number of documents HOWTO

