
1.

MetaStylesheets
Introduction

Meta stylesheets are stylesheets that generate other stylesheets. This technique is usually applied when you have an XML language whose behaviour can
be implemented using an XSLT. A stylesheet can then transform this language into it's XSLT implementation.

Essentially it's a code generation mechanism: you have a that declaratively describes what you want to happen, a code generator in XSLT little language
(the) which transforms this language into the .meta-stylesheet implementation stylesheet

There are several examples of this:

For details on creating XSLT stylesheets that create other stylesheets, see XML Reflection
Schematron – an XML validation language implemented as XSLT, see for a tutorialSchematron - Validating XML using XSLT
Web template languages – see the XML.com article for some relevant background Template Languages in XSLT

Overview

There are therefore two steps in using a meta-stylesheet:

Process your declarative processing description with the meta-stylesheet, generating the implementation stylesheet

2. Process your data with the implementation stylesheet, generating your output.

Here's how to do it in Cocoon. It's very easy!

Note: Xalan is the default for Cocoon 2.0.4. For 2.1 it must be specified It is recommended to use Xalan as opposed to XSLTC for the transformation.
by using in the node.type="xalan" <map:transform>

How It's Done

<map:pipeline>
<map:match pattern="my.html">
 <map:generate src="my.xml"/>
 <map:transform type="xalan" src="cocoon:/implementation-stylesheet.xsl"/>
 <map:serialize/>
</map:match>
</map:pipeline>

<map:pipeline>
<map:match pattern="implementation-stylesheet.xsl">
 <map:generate src="process-description.xml"/>
 <map:transform src="meta-stylesheet.xsl"/>
 <map:serialize type="xml"/>
</map:match>
</map:pipeline>

Here we have two pipelines, each of which perform one steps outline above. The first pipeline does the actual work: it transforms our XML into HTML
results using the implementation stylesheet.

The implementation stylesheet is automatically generated by the second pipeline, which reads a processing description, transforms it with the meta-
stylesheet generating the desired implementation.

Because the implementation stylesheet is generated automatically the meta-stylesheet can take into account additional context, e.g. the request
parameters, when generating the results. This makes for very flexible processing.

– LeighDodds

Issues

I been able to get this working using the cocoon:/ protocol (using 2.0.3), but I found that the dynamic stylesheets didn't appear to be cached, which have
was a big performance hit. StephenNg

I also been able to get this working using the cocoon:/ protocol (using 2.1.1), but the 'transformed' xsl is not able to find any 'included' stylesheets. have
(seems logical, but it is annoying. Is there a solution?)

Note

Always be aware of the fact that such a pipeline is not cached. E.g., if you have a time-consuming generator (like HTML which uses JTidy), split the
pipeline into two separate ones. Instead of

http://www.xml.com/pub/a/2003/11/05/xslt.html
http://www.ldodds.com/papers/schematron_xsltuk.html
http://www.xml.com/pub/a/2002/03/27/templatexslt.html
#
#

<map:match pattern="*.html">
 <map:generate src="{1}.html"/>
 <map:transform src="cocoon:/{1}.xsl"/>
 <map:serialize/>
</map:match>

use

<map:match pattern="*.html">
 <map:generate src="cocoon:/{1}.xml"/>
 <map:transform src="cocoon:/{1}.xsl"/>
 <map:serialize/>
</map:match>

<map:match pattern="*.xml">
 <map:generate src="{1}.html"/>
 <map:serialize type="xml"/>
</map:match>

In the latter case, the "*.xml" pipeline is cached and the overall performance is much better.

– AndreasHartmann

https://cwiki.apache.org/confluence/display/LENYA/AndreasHartmann

	MetaStylesheets

