
1.
2.

ProposalSitemap2JavaApiContract
Proposal for a Sitemap <-> Java API contract for Lenya
(originally started by - please add your comments with name)TorstenSchlabach

Background

There is a high level of agreement amoung Lenya comitters that

some sort of modularity / plugin infrastructure should be introduced
programmatic logic should be moved to the Java layer in order to make sitemaps simpler thus easier to read, understand and maintain. This holds
true for both the publication specific as well as the Lenya core sitemaps
at some point in time, some integration to some repository other than the raw file system is planned

This relates to these two threads on the dev mailing list:

http://nagoya.apache.org/eyebrowse/ReadMsg?listId=283&msgNo=8872
http://nagoya.apache.org/eyebrowse/ReadMsg?listName=dev@lenya.apache.org&msgNo=8941

Note: Sometimes the threads are not properly linked together, so if you want to catch up what was been dicussed, make sure you find all mails
on the subject using the subject search of your favorite archive.

The need for contracts

Contracts are good anyway, but they are most needed when it comes to publications. The impact of changes to Lenya on a publication should be kept
minimal. In other words, at least the Lenya <-> Publication contract should be as stable as possible and as upwards compatible as possible to make it
easy for users to upgrade to a new version of Lenya once it will be released (or even before!) without having to start a migration project on their
publication. Requiring adoption of publications to new Lenya releases will hold people back from upgrading and newer is better!

There is certainly a lot of other contracts involved that should be kept stable if at all possible, for example the contract between the Lenya core and plugins
(editor or ressource type). Taking a look at this drawing from one of the emails mentioned above might help to identify other contracts needed. But the
purpose of this proposal is to define a contract between the Java and the sitemap layer.

+--------------------------+----------+
| | Plugin A | <--> Jackrabbit
| +----------+
| | Plugin B | <--> SVN
| +----------+
| | Plugin C | <--> Wiki Resource Type
| +----------+
| | Plugin E | <--> Link Resource Type
| +----------+
| L e n y a C o r e | Plugin F | <--> SVG Editor
| +----------+
| | Plugin G | <--> RSS Feed Includer
| +----------+
| | Plugin H | <--> XDoc site.xml editor
| +----------+
| | Plugin I | <--> CSS Editor
| +----------+
| | Plugin J | <--> (your wildest phantasies)
| +----------+
| | Plugin K | <--> OpenOffice Desktop Int.
+-----------------+--------+----------+
| Template A | |
+-----------------+ |
| Pub AA | Pub AB | Pub C |
+--------------------------+

Comment by AndreasHartmann

I see two separate concern areas:

Customization and implementation of CMS functionality

IMO the major concerns in this field are:

hide complexity from the integrator

#
http://nagoya.apache.org/eyebrowse/ReadMsg?listId=283&msgNo=8872
http://nagoya.apache.org/eyebrowse/ReadMsg?listName=dev@lenya.apache.org&msgNo=8941
https://cwiki.apache.org/confluence/display/LENYA/AndreasHartmann

2.
3.
4.
5.

1.
2.

1.
2.

provide an API which is minimal (reduce the impact of changes) and complete
use Cocoon concepts
provide simple concepts with reduced flexibility
allow complex customization with full flexibility (if appropriate knowledge is possessed)

Approaches:

Provide an easy-to-use framework to implement CMS functionality (e.g., the usecase framework).
Hide implicit functionality behind the API (e.g., versioning). A step in this direction was taken
by the lightweight repository layer in 2.0.
Hide implementation details behind the API (e.g., meta data storage and workflow history).

Presentation of content

Important points:

provide access to all necessary information in sitemaps and XSLTs
define XML-based interfaces for components (e.g., navigation elements)

Approaches:

Plug-ins + configuration.
Plug-ins + customization (fallback and). Problem: XSLT doesn't provide encapsulation like OOPLs (public and private <xsl:import/>
templates). This makes it harder to declare contracts. A possible approach is:

Extract the overridable templates into a separate stylesheet and include it via the <xsl:import href="fallback://..."/>
Don't use fallback for the main stylesheet to ensure that it can't be overridden.

Do your own (plain Cocoon + Lenya components like). PageEnvelopeModule

Proposal: Eliminate all direct file access from Lenya core and publication sitemaps

There should not be any attributes found in any Sitemaps anymore, where xyz means any URIs without a specific protocol mentioned which src="xyz"
means the will default to the file resolver and and use the URI provided as a file system location which is interpreted relative to the SourceResolver
sitemap location in the directory tree.

This includes not to use any sources as well as they basically do the same.src="context:..."

Current Status

The protocol is a very good example of determining in the Java layer where to look for the actual input. In other words, the lenya: protocol hides lenya:
all the complexitiy (which belongs into the Java layer) from the sitemap. The sitemap can just go to Lenya and request the document "abc" by using
something like . The Java layer will use it's knowledge about the context to determine the actual location of the document. This src="lenya:/abc.xml"
proofed to work very well.

Links

http://www.w3.org/TR/uri-clarification/

Open for discussion

The question will be how this might be extended for locating input other than document / content XML files, such as

core XSLT files
publication specific XSLT files
schemas (I am not saying RNG here, think of on-the-fly conversion ...)
core CSS
plugin Javascript
core Javascript
what have you ...

It comes down to

should the lenya: protocol be extended?
should one or more new protocols be invented?
might the fallback: protocol be obsolated by any new approach?

#
#
http://www.w3.org/TR/uri-clarification/

	ProposalSitemap2JavaApiContract

