Eclipse Unit Tests

Back to DRLVM Test Tracking

Summary
Mission and Status ‘<
How to run EUT 0

1. Prepare Common Environment 0 2. Running EUT within Build & Tests infrastructure 0 3. Running EUT using its own scripts 0 4. Running
EUT testcase with java command 0 5. Running EUT under Eclipse GUI o

EUT3.3 information table

Mission and Status
Test Harmony with Eclipse Unit Tests (version 3.3) to achieve 98% pass rate for all available suites.

EUT is currently demonstrates 99.5+% pass rate on both Windows (2003 Server) and Linux (SLES10) x86 platforms. Please see the testing results at
automated testing report page which is:

http://peopl e. apache. or g/ ~m oenko/ snapshot _t esti ng/ scri pt/snapshots_summary. ht m
Back to Summary
How to run EUT

1. Prepare Common Environment

1.1 Download Eclipse SDK and Eclipse Unit Tests 3.3 archives from:

http://archive. eclipse. org/ eclipse/ downl oads/ drops/ R- 3. 3- 200706251500

where the tests archive name is:

ecl i pse- Aut omat ed- Tests-3. 3. zi p

and depending on platform the Eclipse SDK archive names are:

ecl i pse- SDK-3. 3-wi n32. zi p
ecl i pse-SDK-3. 3-1inux-gtk.tar.gz
ecl i pse- SDK- 3. 3-1i nux-gtk-x86_64.tar.gz

1.2 Choose Reference Java to launch Eclipse

EUT architecture allows to use two runtimes - one to launch Eclipse and parse EUT setup files and second one is to run tests themselves. Using Harmony
as both runtimes is the subject of future work. For now Hot Spot VMshould be used as the Eclipse launcher - just add this java to path like:

export PATH=<path to HostSpot Server VM 1.5.0>

1.3. Patch SWT suite or set the stable proxy

If you are running EUT from outside the firewall or do not run swt suite then just skipt this step.

Recently it was discovered (HARMONY-5306) that swt suite accesses web pages and it hangs if such a page is unavailable (regardless to the runtime
being used). So one needs to setup a stable proxy (it looks like that swt takes it from Mozilla or IExplorer settings) or rebuild swt test suite classes and
data to replace external URLs to any internal one which does not require a proxy to be accessed. The patching is described in 2. Running EUT within Build
& Tests infrastructure section below.

1.3*. Patch jdtdebug suite to run on x86_64

https://cwiki.apache.org/confluence/display/HARMONY/DRLVMTestTracking

If you run the j dt debug suite (separately or in whole EUT suites pack) you need to patch j dt debug suite. The patching is described in 2. Running EUT
within Build & Tests infrastructure section below.

1.4. Prepare Windows environment
1.4.1 On Windows the EUT must be run from Comrand Pronpt (running from Cygwi n is not tested).
1.4.2 EUT requires unzi p command to be available, its documentation recommends using Info-Zip one (ht t p: / / wwww. i nf o- zi p. or g).

1.4.3 There is a path length restriction on Windows for EUT, so the safest way to do not break it is to choose the working directory as close to root as
possible (like c: \ t mp- eut 33).

1.5 Prepare Linux environment
1.5.1 EUT is a GUI application. You need to care about correctly configuration and starting X-server/connection if you run EUT on remote host.

1.5.2 As a temporary workaround for HARMONY-2914 set open files limit to 16256 as:

$ulimit -n 16256
$ulimt -n
16256

You may need to have the root rights to increase the hard limit before setting the soft one as written above.
1.6 Setup cvs server

If you are running t eantvs suite (or just the whole EUT pack) you need to configure cvs server and add the cvs-related settings to configuration files (the
files path depends on the way you choose to run EUT). The following values should be specified:

user - account nane used to connect to the cvs repository
password - the account password

host - the name of cvs server

root - the repository path

for example:

cvs_user =userl

cvs_passwor d=ver yl ongpasswor d
cvs_host =nycvshost . com

cvs_root =/ 1 ocal di sk/ user s/ cvsroot

Note: the remained steps of environment preparation depend on a way of EUT runnning which are described below.

2. Running EUT within Build & Tests infrastructure

There is a Cruise Control based automated testing infrastructure. In particular it contains the ant-based script to run EUT. It is the safest way to run EUT
because this script does most of preparation work - you need just to download the archives, provide the path to Harmony JDK and run the script.

2.1 Checkout Build & Tests infrastructure (BTI):

svn checkout -r HEAD https://svn. apache. org/ repos/ asf/ harnony/ enhanced/ bui | dt est/trunk/tests/eut eut33

Enter the resulted eut 33 directory as the main work directory for the steps below.

To proceed using the checked-out scripts you need to add ant1.6.5 (or later) to your environment like:

export ANT_HOMVE=<path to ant 1.6.5 or later>
export PATH=$ANT_HOME/ bi n: $PATH

You may also need to care about proxy settings for ANT if you work from inside the firewall:

export ANT_OPTS=-Dhtt p. proxyHost =<your proxy host> -Dhttp. proxyPort=<your proxy port>

2.2 Place the downloaded archives into checkout directory like (for Linux x86_64):

http://www.info-zip.org

cp <eclipse- Aut omat ed- Test s- 3. 3. zi p> .
nkdir -p eclipse-testing
cp <ecli pse-SDK-3. 3-1inux-gtk-x86_64.tar.gz> eclipse-testing/.

If you do not have these archives downloaded yet then next step with gets them.

2.3 Build utilities classes

ant setup

This builds a set of utility classes required for EUT results processing. Also this downloads and places accordingly the EUT archives if they are not
available yet - like described in #1.1 and #2.2 above.

2.4 Patch EUT3.3 data

One needs to patch the swt suites data if one runs EUT from inside the unstable firewall (see HARMONY-5306 for details). Also j dt debug is to be
patched if you run on x86_64 arch. The patching process is the same for all suites, so the steps below described swt patching for example.

Pick the local site you want to access from EUT (say, htt p: / /| ocal host : 8080) and execute the steps below:

cd extra/eut.3.3.swt.patching

Copy already downloaded archives to avoid one more downloading from web:

cp ../../leclipse-Autonated-Tests-3.3.zip .
cp ../..leclipse-testing/eclipse-SDK-3.3-win32.zip .

Edit 'properties’ file to specify your local URL:

cat properties | sed -e 's@swt.*@wW.local.url=http://local host:8080@ > X
mv X properties

Do the tests patching by simply executing:

ant

Save the patched archive for future use, copy it to eut 33 root directory at least:

cp ./patched/ eclipse-Automated-Tests-3.3.zip ../../.

2.5 Download ant contrib archive

Download ant contrib archive to eut 33 root directory from:

http://ant-contrib. sourceforge. net

In the later steps it is supposed that ant - cont ri b- 1. Ob3. j ar is downloaded and used.
2.6 Run EUT with BTI scripts

Now you are ready to run EUT. Ok, since running requires ant cont ri b each run command example below should also contain the following proprty set:

-Dext.ant-contrib.location=ant-contrib-1.0b3.jar

For example to run a single suite - j dt debug - execute the following command from eut33 directory:

ant -Dtest.jre.honme=<path to harnony jdk> -Dvm opti ons="-Xmx1024n{ - Dt est s=j dt debug

http://localhost:8080

You can run several suites like:

ant -Dtest.jre.hone=<path to harnony jdk> -Dvm opti ons="-Xmx1024n{ -Dtests="j dtdebug, conpare, ant"

Or all available suites by simply omitting "tests" setting:

ant -Dtest.jre.hone=<path to harnony jdk> -Dvm options="- Xmk1024n{

You may define these properties also in eut . properti es file.
Note: there is no need to clean-up EUT files between runs - the latest version of EUT/BTI cares about such a cleaning before each suite run.
2.7 Understanding EUT-from-BTI results

If there is no internal errors in BTI scripts then the resul t s/ | at est/i ndex. ht nl files is created which contains the summary of the results of recent
run. This file contains the following information:

® relative summary - the relative pass rate for the suites you have just run, so it can be 100% if you run a single suite and all its tests passed

¢ absolute summary - it shows the absolute pass rate calculated based on total tests number in EUT which is over 40'000

® Jink to output.txt - contains EUT run output (both standard and error)

® Jink to report.txt - contains unexpected failures/errors details (like stack traces) collected from correspondent xml reports, recently the number of
failures/errors details was limited to reduce report.txt size.

* link to eut.efl file - there is no eXclude list for EUT, all of the tests are run, still the results are filtered based on Expected Failures List (EFL)

L]

Suites Details information - the following rules are used to create this table:
© if the suite was not run then it is gray in the table
© if the suite ended normally (without crash or hang) and related html report was generated then the suite record is linked to this html file
© if the suite crashed or hanged (and killed by timeout) then it is highlighted with red
© if the suite contains no unexpected errors/failures then no errors/failures are given for it in this summary table

Back to Summary

3. Running EUT using its own scripts
Suppose that you've successfully done all steps from the section #1 above, and EUT related archives are placed in the current directory... Then:

3.1 Unpack tests and move SDK to 'eclipse-testing'":

unzip -qq eclipse-Automat ed-Tests-3.3.zip
cd eclipse-testing
mv .. /eclipse-SDK-3.3-1inux-gtk-x86_64.tar.gz .

You entered the resulted ecl i pse-t est i ng directory which is the main work directory for the steps below.
3.2 Prepare properties file:

Create any property file (say, eut . run. properti es) with the content like:

J2SE- 5. O=<your Harnony JDK Home>/ bi n/java

j vme<your Harnmony JDK Honme>/ bi n/java

extraVMar gs=- shower si on - Xnx1024M - Duser . hone=<your hone> -Dj ava. i o.tnpdi r=<your tenp>
runt i meAr chi ve=ecl i pse- SDK- 3. 3-1 i nux- gt k-x86_64. tar. gz

user . hone=<your home>

java.io.tnpdir=<your tenp>

You may miss the user . hone and j ava. i o. t npdi r redefinition still it is recommended to do this settings as well as removing all data from these
directories before each run of suite.

If you are running t eantvs suite you need to configure cvs server (this subject is out of this document scope) and add the cvs-related settings to
properties file like:

cvs_user=<account name used to connect to the cvs repository>
cvs_passwor d=<t he account password>

cvs_host =<t he nane of cvs server>

cvs_root =<the repository path>

3.3 Patch runt est s script (Linux only):

You need to comment out the DISPLAY setting in the r unt est s script. For example:

cat runtests | sed -e 's@DI SPLAY@D SPLAY@ > X
m/ X runtests
chnod a+x runtests

3.4 Run EUT with its own scripts

Now you are ready to run EUT. To run all of the suites on SLES10 x86_64 execute the command:

./runtests -properties eut.run.properties -os linux -ws gtk -arch x86_64

Execute the same command appended by particular suite name to run this suite only like:

./runtests -properties eut.run.properties -os linux -ws gtk -arch x86_64 jdtdebug

You need to clean all of data created by Eclipse/EUT to insure the accurate run of next suite. The safest way to do this is to repeat all steps starting from
3.1 above before each suite run.

3.4 Understanding EUT-run-by-own-scripts results

The results/logs files are located at r esul t s directory. For example, to get the result of j dt debug suite run first of all see the file:

results/htm/org. eclipse.jdt.debug.tests_linux.gtk.x86_64. htn

Back to Summary

4. Running EUT testcase with java command
Suppose that you've successfully done all steps from the section #1 above, and EUT related archives are placed in the current directory... Then:
4.1 Unpack tests and SDK:

For example, for SLES10 x86_64 execute the following:

unzip -qq eclipse-Autonat ed- Tests-3.3.zip

cd eclipse-testing

unzip -qq eclipse-junit-tests-120070625-1500. zi p
tar xzf ../eclipse-SDK-3.3-1inux-gtk-x86_64.tar.gz

In case of ecl i pse- SDK- 3. 3-wi n32. zi p unzipping you need to allow overiding to Al | files.
You entered the resulted ecl i pse-t est i ng directory which is the main work directory for the steps below.
4.2 Detect command line parameters for suite

First, get the failed suite class name, for example from main page of EUT report on automated testing page (see URL above). An example of such a name
isorg. eclipse.jdt.debug.tests. Aut omat edSui te.

Then you can get the plugin name based on package name of the class you found from ecl i pse-testing/test. xm from the structure like:

<t arget nane="jdtdebug">
<runTests testPlugin="org.eclipse.jdt.debug.tests" />
</target>

Note, that sometimes one plugin keeps several suites, so there may be no 1-to-1 correspondance - be creative to derive the plugin name.

Finally you need to detect if the suite is ui t est appl i cati on or cor et est appl i cati on. Inspect the t est. xml of related plugin to get this like:

ecl i pse/ pl ugi ns/org. eclipse.jdt.debug.tests_3.1.0/test.xn

and look for ant t ar get = pattern in it like:

<ant target="ui-test" antfile="${library-file}" dir="%${eclipse-honme}">

So, if the target is ui - t est then you get ui t est appl i cat i on, otherwise it is cor et est appl i cati on.

Another way to get this data is to just follow the "Properties>>" link at the right bottom part of suite report (in case such a report is available) like:

http:// peopl e. apache. or g/ ~sni shur a/ r 603534/ Li nux_x86_64/ eut 33/ resul ts/htm /org. eclipse.jdt.debug.tests_linux.
gt k. x86_64. ht m

and inspect the ecl i pse. conmands value (to long to be listed here). For example for j dt debug suite you may see:

-application org.eclipse.test.uitestapplication
-test Plugi nNarme org. eclipse.jdt.debug.tests
-classNane org. eclipse.jdt.debug.tests. AutonatedSuite

The simplest way is to use the table below in the EUT3.3 information table section.
4.3 Run EUT with java command

You are ready to run EUT suite with java command. For example, for jdtdebug suite on Linux x86_64 the command looks like:

export JAVA HOVE=<HARMONY JDK_HOVE>
export PATH=$JAVA HOWE/ bi n: $PATH

${JAVA HOVE}/ bi n/java \
-showersion \
-jar eclipsel/plugins/org.eclipse.equinox.launcher_1.0.0.v20070606.jar \
-application org.eclipse.test.uitestapplication \
-dev bin\
-data workspace \
formatter=org. apache.tool s. ant.taskdefs. optional.junit.XM.JUnitResultFornatter,|og.xm \
-test plugi nname org. eclipse.jdt.debug.tests \
-cl assnane org. eclipse.jdt.debug.tests. AutonatedSuite \
2>&1 | tee |og.txt

If you need to specify more properties to this run you need to use the standard way to pass them like:

- Duser . home=<your hone> \
-Djava.io. tnpdir=<your tenp> \
-jar eclipse/plugins/org.eclipse.equinox.|launcher_1.0.0.v20070606.jar \

4.4 Understanding EUT-run-with-java-command results

The EUT/suite results are located at | og. xm (because this | og. xml was specified for f or mat t er value in the command above). For example, one of
the first lines gives the status of suite run like:

<testsuite errors="0" failures="3" name="Aut omat edSui te" package="org. eclipse.jdt.debug.tests" tests="598"
tinme="517. 00" >

Also the process standard/error output was redirected to | og. t xt - you may want to see it also.

5. Running EUT under Eclipse GUI

Finally you may run EUT as JUnit Plug-in Tests in Eclipse project (which is very helpful for single test debugging).

You need to unpack tests and SDK as described in 4.1 section above. After that you need to do the following steps:
® Runeclipsefrom<path to your eclipse-testing>/eclipse directory

® Select new workspace directory - make sure you control this location to clean up it before next run of Eclipse
® Selectmenu"File"->"Inport"

® In the newly appeared " | nport " dialog expand " Pl ug-i n Devel opnent" and select" Pl ug-i ns and Fragnents", click " Next" button
® Inthe"Plug-ins and Fragnents" dialog:
© Uncheck the checkbox " The target platform (as specified in the Preferences)" and make sure that" Pl ug-in
Location" issetto<path to your eclipse-testing>/eclipse
O Click " Source Code Locations..." button -inthe opened " Pr ef er ences" dialog go to " Source code | ocati ons" tab, click"
Add. . . " button and select the following location:

<path to your eclipse-testing>/eclipse/plugins/org.eclipse.sdk.tests.source_3.2.0.v20070607/src

® Click " Ck" to submit your selection, then click " Ok" to close " Pr ef er ences” dialog
®* Inthe"Inport As" paneselect"Projects with source fol ders" radio button and click " Next "

® In"Sel ection" dialog select the test plugin name from the list (like or g. ecl i pse. j dt. debug. t est s), click " Add - ->" button and "Fi ni s
h" button.

Now the test suite is imported as an Eclipse project and should be built (check " Bui | d Aut omati cal I y" inthe " Proj ect” menu if unchecked). When
it shows no errors, do the following:

® Select the projectin " Package Expl orer" view (Al t +Shi ft +QP)
® Gotomenu"Run"->"Cpen Run Dialog..."
® Select"JUnit Plug-in Test" hereand click a"New" icon in the left top corner of the dialog window
® |n the right pane of this " Run" dialog:
O Choose the " Test " tab, check "Run a single test" and specify here:
® plugin name like or g. ecl i pse. j dt. debug.tests as"Project:"
® test class name like or g. ecl i pse. j dt . debug. t est s. Aut omat edSuite as " Test cl ass:"
© Then go to the "Main" tab, select " Run an appl i cati on: " radio button and choose " or g. ecl i pse. ui . i de. wor kbench" from
the drop-down-list.
© Inthe same tab clickto "I nstal | ed JREs" button and specify the path to Harmony JRE, then select it as "Runtime JRE"
© Finally click the " Run" button.

In a minute the suite will be launched and you will have "Junit" view opened with test and testcases tree. You can use this view to re-run one test class (or
testcase) if necessary.

Back to Summary

EUT3.3 information table

Suite name Plugin name Application type ' Test Class Tests Platform
ant org.eclipse.ant.tests.core core org.eclipse.ant.tests.core.AutomatedSuite 85 all
antui org.eclipse.ant.tests.ui ui org.eclipse.ant.tests.ui.testplugin.AntUI Tests 171 all
compare org.eclipse.compare.tests ui org.eclipse.compare.tests.AllTests 60 all
coreexpressions org.eclipse.core.expressions.tests ui org.eclipse.core.internal.expressions.tests.AllTests 94 all
filebuffers org.eclipse.core filebuffers.tests core org.eclipse.core filebuffers.tests.FileBuffersTestSuite 362 all
coreresources org.eclipse.core.tests.resources core org.eclipse.core.tests.resources.AutomatedTests 862 all
coreruntime org.eclipse.core.tests.runtime core org.eclipse.core.tests.runtime.AutomatedTests 360 all
coretestsnet org.eclipse.core.tests.net core org.eclipse.core.tests.net.AllNetTests 6 all
jdtapt org.eclipse.jdt.apt.tests ui org.eclipse.jdt.apt.tests. TestAll 109 all
jdtcorebuilder org.eclipse.jdt.core.tests.builder core org.eclipse.jdt.core.tests.builder.BuilderTests 175 all
jdtcorecompiler org.eclipse.jdt.core.tests.compiler core org.eclipse.jdt.core.tests.compiler.parser.TestAll 5763 all
core org.eclipse.jdt.core.tests.compiler.regression.TestAll | 8213 all

core org.eclipse.jdt.core.tests.eval. TestAll 531 win32

jdtcoremodel org.eclipse.jdt.core.tests.model core org.eclipse.jdt.core.tests.RunFormatterTests 758 all
core org.eclipse.jdt.core.tests.dom.RunAllTests 2917 all

core org.eclipse.jdt.core.tests.model.AllJavaModelTests 5328 all

jdtcoreperf org.eclipse.jdt.core.tests.performance core org.eclipse.jdt.core.tests.performance.OneTest 1 all
jdtdebug org.eclipse.jdt.debug.tests ui org.eclipse.jdt.debug.tests.AutomatedSuite 598 all
jdttext org.eclipse.jdt.text.tests ui org.eclipse.jdt.text.tests.JdtTextTestSuite 515 all
jdtuirefactoring org.eclipse.jdt.ui.tests.refactoring ui org.eclipse.jdt.ui.tests.refactoring.all. AllAlIRefactoring Tests 3449 all
jdtui org.eclipse.jdt.ui.tests ui org.eclipse.jdt.ui.tests.AutomatedSuite 1488 all
ui org.eclipse.jdt.ui.tests.LeakTestSuite 9 win32

jfacedatabinding org.eclipse.jface.tests.databinding core org.eclipse.jface.tests.databinding.BindingTestSuite 730 all
jface org.eclipse jface.text.tests core org.eclipse jface.text.tests.JFaceTextTestSuite 138 all
ltkcorerefactoringtests | org.eclipse.ltk.core.refactoring.tests ui org.eclipse.ltk.core.refactoring.tests.AllTests 1 all
Itkuirefactoringtests org.eclipse.ltk.ui.refactoring.tests ui org.eclipse.ltk.ui.refactoring.tests.AllTests 1 all
osgi org.eclipse.osgi.tests core org.eclipse.osgi.tests.AutomatedTests 198 all
pdeui org.eclipse.pde.ui.tests ui org.eclipse.pde.ui.tests. AlIPDETests 310 all
relEng org.eclipse.releng.tests core org.eclipse.releng.tests.BuildTests 5 all
swt org.eclipse.swt.tests core org.eclipse.swt.tests.junit. AllTests 5297 win32

core org.eclipse.swt.tests.junit. AllGtkTests 5276 linux

teamcore
ui

teamcvs

ui

text

ua
uieditors
uinavigator
uircp
uiviews

ui

core

ui

ui
uiworkbenchtexteditor

update

org.eclipse.team.tests.core
org.eclipse.team.tests.core.AllTeamUITests
org.eclipse.team.tests.cvs.core
org.eclipse.team.tests.ccvs.core.AllTests
org.eclipse.text.tests

org.eclipse.ua.tests
org.eclipse.ui.editors.tests
org.eclipse.ui.tests.navigator
org.eclipse.ui.tests.rcp
org.eclipse.ui.tests.views.properties.tabbed
org.eclipse.ui.tests
org.eclipse.ui.parts.tests.PartsReferencesTestSuite
org.eclipse.ui.tests.UiTestSuite
org.eclipse.ui.tests.session.SessionTests
org.eclipse.ui.workbench.texteditor.tests

org.eclipse.update.tests.core

Back to Summary

Back to DRLVM Test Tracking

core

core
ui

ui

ui
core
ui
core
12
1234
25

ui

core

org.eclipse.team.tests.core.AllTeamTests

all
org.eclipse.team.tests.ccvs.core.AllCoreTests
all

org.eclipse.text.tests.EclipseTextTestSuite
org.eclipse.ua.tests.AllTests
org.eclipse.ui.editors.tests.EditorsTestSuite

org.eclipse.ui.tests.navigator.NavigatorTestSuite

org.eclipse.ui.tests.rcp.RepTestSuite
org.eclipse.ui.tests.views.properties.tabbed.AllTests
org.eclipse.jface.tests.AllTests

all

all

all

org.eclipse.ui.workbench.texteditor.tests.WorkbenchTextEditorTestSuite

org.eclipse.update.tests.AllTests

15

41

441

228

11

12

29

674

56

all

all

all
all
all
all
all
all

all

all

all

https://cwiki.apache.org/confluence/display/HARMONY/DRLVMTestTracking

	Eclipse Unit Tests

