
1.

Eclipse Unit Tests
Back to DRLVM Test Tracking

Summary

Mission and Status

How to run EUT

Prepare Common Environment 2. 3. 4. Running EUT within Build & Tests infrastructure Running EUT using its own scripts Running
 5. EUT testcase with java command Running EUT under Eclipse GUI

EUT3.3 information table

Mission and Status

Test Harmony with Eclipse Unit Tests (version 3.3) to achieve 98% pass rate for all available suites.

EUT is currently demonstrates 99.5+% pass rate on both Windows (2003 Server) and Linux (SLES10) x86 platforms. Please see the testing results at
automated testing report page which is:

http://people.apache.org/~mloenko/snapshot_testing/script/snapshots_summary.html

Back to Summary

How to run EUT

1. Prepare Common Environment

1.1 Download Eclipse SDK and Eclipse Unit Tests 3.3 archives from:

http://archive.eclipse.org/eclipse/downloads/drops/R-3.3-200706251500

where the tests archive name is:

eclipse-Automated-Tests-3.3.zip

and depending on platform the Eclipse SDK archive names are:

eclipse-SDK-3.3-win32.zip
eclipse-SDK-3.3-linux-gtk.tar.gz
eclipse-SDK-3.3-linux-gtk-x86_64.tar.gz

1.2 Choose Reference Java to launch Eclipse

EUT architecture allows to use two runtimes - one to launch Eclipse and parse EUT setup files and second one is to run tests themselves. Using Harmony
as both runtimes is the subject of future work. For now should be used as the Eclipse launcher - just add this java to path like:HotSpot VM

export PATH=<path to HostSpot Server VM 1.5.0>

1.3. Patch SWT suite or set the stable proxy

If you are running EUT from outside the firewall or do not run suite then just skipt this step.swt

Recently it was discovered (HARMONY-5306) that suite accesses web pages and it hangs if such a page is unavailable (regardless to the runtime swt
being used). So one needs to setup a stable proxy (it looks like that takes it from Mozilla or IExplorer settings) or rebuild test suite classes and swt swt
data to replace external URLs to any internal one which does not require a proxy to be accessed. The patching is described in 2. Running EUT within Build

 section below.& Tests infrastructure

1.3*. Patch jdtdebug suite to run on x86_64

https://cwiki.apache.org/confluence/display/HARMONY/DRLVMTestTracking

If you run the suite (separately or in whole EUT suites pack) you need to patch suite. The patching is described in jdtdebug jdtdebug 2. Running EUT
 section below.within Build & Tests infrastructure

1.4. Prepare Windows environment

1.4.1 On Windows the EUT must be run from (running from is not tested).Command Prompt Cygwin

1.4.2 EUT requires command to be available, its documentation recommends using one ().unzip Info-Zip http://www.info-zip.org

1.4.3 There is a path length restriction on Windows for EUT, so the safest way to do not break it is to choose the working directory as close to root as
possible (like).c:\tmp-eut33

1.5 Prepare Linux environment

1.5.1 EUT is a GUI application. You need to care about correctly configuration and starting X-server/connection if you run EUT on remote host.

1.5.2 As a temporary workaround for HARMONY-2914 set open files limit to 16256 as:

$ulimit -n 16256
$ulimit -n
16256

You may need to have the root rights to increase the hard limit before setting the soft one as written above.

1.6 Setup cvs server

If you are running suite (or just the whole EUT pack) you need to configure cvs server and add the cvs-related settings to configuration files (the teamcvs
files path depends on the way you choose to run EUT). The following values should be specified:

user - account name used to connect to the cvs repository
password - the account password
host - the name of cvs server
root - the repository path

for example:

cvs_user=user1
cvs_password=verylongpassword
cvs_host=mycvshost.com
cvs_root=/localdisk/users/cvsroot

Note: the remained steps of environment preparation depend on a way of EUT runnning which are described below.

2. Running EUT within Build & Tests infrastructure

There is a Cruise Control based automated testing infrastructure. In particular it contains the ant-based script to run EUT. It is the safest way to run EUT
because this script does most of preparation work - you need just to download the archives, provide the path to Harmony JDK and run the script.

2.1 Checkout Build & Tests infrastructure (BTI):

svn checkout -r HEAD https://svn.apache.org/repos/asf/harmony/enhanced/buildtest/trunk/tests/eut eut33

Enter the resulted directory as the main work directory for the steps below.eut33

To proceed using the checked-out scripts you need to add ant1.6.5 (or later) to your environment like:

export ANT_HOME=<path to ant 1.6.5 or later>
export PATH=$ANT_HOME/bin:$PATH

You may also need to care about proxy settings for ANT if you work from inside the firewall:

export ANT_OPTS=-Dhttp.proxyHost=<your proxy host> -Dhttp.proxyPort=<your proxy port>

2.2 Place the downloaded archives into checkout directory like (for Linux x86_64):

http://www.info-zip.org

cp <eclipse-Automated-Tests-3.3.zip> .
mkdir -p eclipse-testing
cp <eclipse-SDK-3.3-linux-gtk-x86_64.tar.gz> eclipse-testing/.

If you do not have these archives downloaded yet then next step with gets them.

2.3 Build utilities classes

ant setup

This builds a set of utility classes required for EUT results processing. Also this downloads and places accordingly the EUT archives if they are not
available yet - like described in #1.1 and #2.2 above.

2.4 Patch EUT3.3 data

One needs to patch the suites data if one runs EUT from inside the unstable firewall (see HARMONY-5306 for details). Also is to be swt jdtdebug
patched if you run on x86_64 arch. The patching process is the same for all suites, so the steps below described patching for example.swt

Pick the local site you want to access from EUT (say,) and execute the steps below:http://localhost:8080

cd extra/eut.3.3.swt.patching

Copy already downloaded archives to avoid one more downloading from web:

cp ../../eclipse-Automated-Tests-3.3.zip .
cp ../../eclipse-testing/eclipse-SDK-3.3-win32.zip .

Edit 'properties' file to specify your local URL:

cat properties | sed -e 's@^swt.*@swt.local.url=http://localhost:8080@' > X
mv X properties

Do the tests patching by simply executing:

ant

Save the patched archive for future use, copy it to root directory at least:eut33

cp ./patched/eclipse-Automated-Tests-3.3.zip ../../.

2.5 Download ant contrib archive

Download ant contrib archive to root directory from:eut33

http://ant-contrib.sourceforge.net

In the later steps it is supposed that is downloaded and used.ant-contrib-1.0b3.jar

2.6 Run EUT with BTI scripts

Now you are ready to run EUT. Ok, since running requires each run command example below should also contain the following proprty set:ant contrib

-Dext.ant-contrib.location=ant-contrib-1.0b3.jar

For example to run a single suite - - execute the following command from eut33 directory:jdtdebug

ant -Dtest.jre.home=<path to harmony jdk> -Dvm.options="-Xmx1024m" -Dtests=jdtdebug

http://localhost:8080

You can run several suites like:

ant -Dtest.jre.home=<path to harmony jdk> -Dvm.options="-Xmx1024m" -Dtests="jdtdebug,compare,ant"

Or all available suites by simply omitting "tests" setting:

ant -Dtest.jre.home=<path to harmony jdk> -Dvm.options="-Xmx1024m"

You may define these properties also in file.eut.properties

Note: there is no need to clean-up EUT files between runs - the latest version of EUT/BTI cares about such a cleaning before each suite run.

2.7 Understanding EUT-from-BTI results

If there is no internal errors in BTI scripts then the files is created which contains the summary of the results of recent results/latest/index.html
run. This file contains the following information:

relative summary - the relative pass rate for the suites you have just run, so it can be 100% if you run a single suite and all its tests passed
absolute summary - it shows the absolute pass rate calculated based on total tests number in EUT which is over 40'000
link to output.txt - contains EUT run output (both standard and error)
link to report.txt - contains unexpected failures/errors details (like stack traces) collected from correspondent xml reports, recently the number of
failures/errors details was limited to reduce report.txt size.
link to eut.efl file - there is no eXclude list for EUT, all of the tests are run, still the results are filtered based on Expected Failures List (EFL)
Suites Details information - the following rules are used to create this table:

if the suite was not run then it is gray in the table
if the suite ended normally (without crash or hang) and related html report was generated then the suite record is linked to this html file
if the suite crashed or hanged (and killed by timeout) then it is highlighted with red
if the suite contains no unexpected errors/failures then no errors/failures are given for it in this summary table

Back to Summary

3. Running EUT using its own scripts

Suppose that you've successfully done all steps from the section #1 above, and EUT related archives are placed in the current directory... Then:

3.1 Unpack tests and move SDK to 'eclipse-testing':

unzip -qq eclipse-Automated-Tests-3.3.zip
cd eclipse-testing
mv ../eclipse-SDK-3.3-linux-gtk-x86_64.tar.gz .

You entered the resulted directory which is the main work directory for the steps below.eclipse-testing

3.2 Prepare properties file:

Create any property file (say,) with the content like:eut.run.properties

J2SE-5.0=<your Harmony JDK Home>/bin/java
jvm=<your Harmony JDK Home>/bin/java
extraVMargs=-showversion -Xmx1024M -Duser.home=<your home> -Djava.io.tmpdir=<your temp>
runtimeArchive=eclipse-SDK-3.3-linux-gtk-x86_64.tar.gz
user.home=<your home>
java.io.tmpdir=<your temp>

You may miss the and redefinition still it is recommended to do this settings as well as removing all data from these user.home java.io.tmpdir
directories before each run of suite.

If you are running suite you need to configure cvs server (this subject is out of this document scope) and add the cvs-related settings to teamcvs
properties file like:

cvs_user=<account name used to connect to the cvs repository>
cvs_password=<the account password>
cvs_host=<the name of cvs server>
cvs_root=<the repository path>

3.3 Patch scriptruntests (Linux only):

You need to comment out the DISPLAY setting in the script. For example:runtests

cat runtests | sed -e 's@^DISPLAY@#DISPLAY@' > X
mv X runtests
chmod a+x runtests

3.4 Run EUT with its own scripts

Now you are ready to run EUT. To run all of the suites on SLES10 x86_64 execute the command:

./runtests -properties eut.run.properties -os linux -ws gtk -arch x86_64

Execute the same command appended by particular suite name to run this suite only like:

./runtests -properties eut.run.properties -os linux -ws gtk -arch x86_64 jdtdebug

You need to clean all of data created by Eclipse/EUT to insure the accurate run of next suite. The safest way to do this is to repeat all steps starting from
3.1 above before each suite run.

3.4 Understanding EUT-run-by-own-scripts results

The results/logs files are located at directory. For example, to get the result of suite run first of all see the file:results jdtdebug

results/html/org.eclipse.jdt.debug.tests_linux.gtk.x86_64.html

Back to Summary

4. Running EUT testcase with java command

Suppose that you've successfully done all steps from the section #1 above, and EUT related archives are placed in the current directory... Then:

4.1 Unpack tests and SDK:

For example, for SLES10 x86_64 execute the following:

unzip -qq eclipse-Automated-Tests-3.3.zip
cd eclipse-testing
unzip -qq eclipse-junit-tests-I20070625-1500.zip
tar xzf ../eclipse-SDK-3.3-linux-gtk-x86_64.tar.gz

In case of unzipping you need to allow overiding to files.eclipse-SDK-3.3-win32.zip All

You entered the resulted directory which is the main work directory for the steps below.eclipse-testing

4.2 Detect command line parameters for suite

First, get the failed suite class name, for example from main page of EUT report on automated testing page (see URL above). An example of such a name
is .org.eclipse.jdt.debug.tests.AutomatedSuite

Then you can get the plugin name based on package name of the class you found from from the structure like:eclipse-testing/test.xml

<target name="jdtdebug">
 <runTests testPlugin="org.eclipse.jdt.debug.tests" />
</target>

Note, that sometimes one plugin keeps several suites, so there may be no 1-to-1 correspondance - be creative to derive the plugin name.

Finally you need to detect if the suite is or . Inspect the of related plugin to get this like:uitestapplication coretestapplication test.xml

eclipse/plugins/org.eclipse.jdt.debug.tests_3.1.0/test.xml

and look for pattern in it like:ant target=

 <ant target="ui-test" antfile="${library-file}" dir="${eclipse-home}">

So, if the target is then you get , otherwise it is .ui-test uitestapplication coretestapplication

Another way to get this data is to just follow the "Properties>>" link at the right bottom part of suite report (in case such a report is available) like:

http://people.apache.org/~smishura/r603534/Linux_x86_64/eut33/results/html/org.eclipse.jdt.debug.tests_linux.
gtk.x86_64.html

and inspect the value (to long to be listed here). For example for suite you may see:eclipse.commands jdtdebug

-application org.eclipse.test.uitestapplication
-testPluginName org.eclipse.jdt.debug.tests
-className org.eclipse.jdt.debug.tests.AutomatedSuite

The simplest way is to use the table below in the section.EUT3.3 information table

4.3 Run EUT with java command

You are ready to run EUT suite with java command. For example, for jdtdebug suite on Linux x86_64 the command looks like:

export JAVA_HOME=<HARMONY_JDK_HOME>
export PATH=$JAVA_HOME/bin:$PATH

${JAVA_HOME}/bin/java \
 -showversion \
 -jar eclipse/plugins/org.eclipse.equinox.launcher_1.0.0.v20070606.jar \
 -application org.eclipse.test.uitestapplication \
 -dev bin \
 -data workspace \
 formatter=org.apache.tools.ant.taskdefs.optional.junit.XMLJUnitResultFormatter,log.xml \
 -testpluginname org.eclipse.jdt.debug.tests \
 -classname org.eclipse.jdt.debug.tests.AutomatedSuite \
 2>&1 | tee log.txt

If you need to specify more properties to this run you need to use the standard way to pass them like:

 ...
 -Duser.home=<your home> \
 -Djava.io.tmpdir=<your temp> \
 -jar eclipse/plugins/org.eclipse.equinox.launcher_1.0.0.v20070606.jar \
 ...

4.4 Understanding EUT-run-with-java-command results

The EUT/suite results are located at (because this was specified for value in the command above). For example, one of log.xml log.xml formatter
the first lines gives the status of suite run like:

<testsuite errors="0" failures="3" name="AutomatedSuite" package="org.eclipse.jdt.debug.tests" tests="598"
time="517.00">

Also the process standard/error output was redirected to - you may want to see it also.log.txt

5. Running EUT under Eclipse GUI

Finally you may run EUT as JUnit Plug-in Tests in Eclipse project (which is very helpful for single test debugging).

You need to unpack tests and SDK as described in 4.1 section above. After that you need to do the following steps:

Run from directoryeclipse <path to your eclipse-testing>/eclipse
Select new workspace directory - make sure you control this location to clean up it before next run of Eclipse
Select menu "File"->"Import"

In the newly appeared dialog expand and select , click button"Import" "Plug-in Development" "Plug-ins and Fragments" "Next"
In the dialog:"Plug-ins and Fragments"

Uncheck the checkbox and make sure that "The target platform (as specified in the Preferences)" "Plug-in
 is set to Location" <path to your eclipse-testing>/eclipse

Click button - in the opened dialog go to tab, click "Source Code Locations..." "Preferences" "Source code locations" "
 button and select the following location: Add..."

<path to your eclipse-testing>/eclipse/plugins/org.eclipse.sdk.tests.source_3.2.0.v20070607/src

Click to submit your selection, then click to close dialog"Ok" "Ok" "Preferences"
In the pane select radio button and click "Import As" "Projects with source folders" "Next"

In dialog select the test plugin name from the list (like), click button and "Selection" org.eclipse.jdt.debug.tests "Add -->" "Finis
 button. h"

Now the test suite is imported as an Eclipse project and should be built (check in the menu if unchecked). When "Build Automatically" "Project"
it shows no errors, do the following:

Select the project in view (,)"Package Explorer" Alt+Shift+Q P
Go to menu "Run"->"Open Run Dialog..."
Select here and click a icon in the left top corner of the dialog window"JUnit Plug-in Test" "New"
In the right pane of this dialog:"Run"

Choose the tab, check and specify here:"Test" "Run a single test"
plugin name like as org.eclipse.jdt.debug.tests "Project:"
test class name like as org.eclipse.jdt.debug.tests.AutomatedSuite "Test class:"

Then go to the "Main" tab, select radio button and choose from "Run an application:" "org.eclipse.ui.ide.workbench"
the drop-down-list.
In the same tab click to button and specify the path to Harmony JRE, then select it as "Runtime JRE""Installed JREs"
Finally click the button. "Run"

In a minute the suite will be launched and you will have "Junit" view opened with test and testcases tree. You can use this view to re-run one test class (or
testcase) if necessary.

Back to Summary

EUT3.3 information table

Suite name Plugin name Application type Test Class Tests Platform

ant org.eclipse.ant.tests.core core org.eclipse.ant.tests.core.AutomatedSuite 85 all

antui org.eclipse.ant.tests.ui ui org.eclipse.ant.tests.ui.testplugin.AntUITests 171 all

compare org.eclipse.compare.tests ui org.eclipse.compare.tests.AllTests 60 all

coreexpressions org.eclipse.core.expressions.tests ui org.eclipse.core.internal.expressions.tests.AllTests 94 all

filebuffers org.eclipse.core.filebuffers.tests core org.eclipse.core.filebuffers.tests.FileBuffersTestSuite 362 all

coreresources org.eclipse.core.tests.resources core org.eclipse.core.tests.resources.AutomatedTests 862 all

coreruntime org.eclipse.core.tests.runtime core org.eclipse.core.tests.runtime.AutomatedTests 360 all

coretestsnet org.eclipse.core.tests.net core org.eclipse.core.tests.net.AllNetTests 6 all

jdtapt org.eclipse.jdt.apt.tests ui org.eclipse.jdt.apt.tests.TestAll 109 all

jdtcorebuilder org.eclipse.jdt.core.tests.builder core org.eclipse.jdt.core.tests.builder.BuilderTests 175 all

jdtcorecompiler org.eclipse.jdt.core.tests.compiler core org.eclipse.jdt.core.tests.compiler.parser.TestAll 5763 all

core org.eclipse.jdt.core.tests.compiler.regression.TestAll 8213 all

core org.eclipse.jdt.core.tests.eval.TestAll 531 win32

jdtcoremodel org.eclipse.jdt.core.tests.model core org.eclipse.jdt.core.tests.RunFormatterTests 758 all

core org.eclipse.jdt.core.tests.dom.RunAllTests 2917 all

core org.eclipse.jdt.core.tests.model.AllJavaModelTests 5328 all

jdtcoreperf org.eclipse.jdt.core.tests.performance core org.eclipse.jdt.core.tests.performance.OneTest 1 all

jdtdebug org.eclipse.jdt.debug.tests ui org.eclipse.jdt.debug.tests.AutomatedSuite 598 all

jdttext org.eclipse.jdt.text.tests ui org.eclipse.jdt.text.tests.JdtTextTestSuite 515 all

jdtuirefactoring org.eclipse.jdt.ui.tests.refactoring ui org.eclipse.jdt.ui.tests.refactoring.all.AllAllRefactoringTests 3449 all

jdtui org.eclipse.jdt.ui.tests ui org.eclipse.jdt.ui.tests.AutomatedSuite 1488 all

ui org.eclipse.jdt.ui.tests.LeakTestSuite 9 win32

jfacedatabinding org.eclipse.jface.tests.databinding core org.eclipse.jface.tests.databinding.BindingTestSuite 730 all

jface org.eclipse.jface.text.tests core org.eclipse.jface.text.tests.JFaceTextTestSuite 138 all

ltkcorerefactoringtests org.eclipse.ltk.core.refactoring.tests ui org.eclipse.ltk.core.refactoring.tests.AllTests 1 all

ltkuirefactoringtests org.eclipse.ltk.ui.refactoring.tests ui org.eclipse.ltk.ui.refactoring.tests.AllTests 1 all

osgi org.eclipse.osgi.tests core org.eclipse.osgi.tests.AutomatedTests 198 all

pdeui org.eclipse.pde.ui.tests ui org.eclipse.pde.ui.tests.AllPDETests 310 all

relEng org.eclipse.releng.tests core org.eclipse.releng.tests.BuildTests 5 all

swt org.eclipse.swt.tests core org.eclipse.swt.tests.junit.AllTests 5297 win32

core org.eclipse.swt.tests.junit.AllGtkTests 5276 linux

teamcore org.eclipse.team.tests.core core org.eclipse.team.tests.core.AllTeamTests 15 all

ui org.eclipse.team.tests.core.AllTeamUITests 1 all

teamcvs org.eclipse.team.tests.cvs.core ui org.eclipse.team.tests.ccvs.core.AllCoreTests 41 all

ui org.eclipse.team.tests.ccvs.core.AllTests 155 all

text org.eclipse.text.tests core org.eclipse.text.tests.EclipseTextTestSuite 441 all

ua org.eclipse.ua.tests ui org.eclipse.ua.tests.AllTests 228 all

uieditors org.eclipse.ui.editors.tests ui org.eclipse.ui.editors.tests.EditorsTestSuite 11 all

uinavigator org.eclipse.ui.tests.navigator ui org.eclipse.ui.tests.navigator.NavigatorTestSuite 12 all

uircp org.eclipse.ui.tests.rcp core org.eclipse.ui.tests.rcp.RcpTestSuite 29 all

uiviews org.eclipse.ui.tests.views.properties.tabbed ui org.eclipse.ui.tests.views.properties.tabbed.AllTests 6 all

ui org.eclipse.ui.tests core org.eclipse.jface.tests.AllTests 674 all

core org.eclipse.ui.parts.tests.PartsReferencesTestSuite 12 all

ui org.eclipse.ui.tests.UiTestSuite 1234 all

ui org.eclipse.ui.tests.session.SessionTests 25 all

uiworkbenchtexteditor org.eclipse.ui.workbench.texteditor.tests ui org.eclipse.ui.workbench.texteditor.tests.WorkbenchTextEditorTestSuite 56 all

update org.eclipse.update.tests.core core org.eclipse.update.tests.AllTests 130 all

Back to Summary

Back to DRLVM Test Tracking

https://cwiki.apache.org/confluence/display/HARMONY/DRLVMTestTracking

	Eclipse Unit Tests

