
JVM Implementation Ideas
This is a list of various useful design ideas and implementation tricks that may be desirable to include in Harmony.

Per-class loader memory areas

Idea: class loaders and all their defined classes are unloaded all at once. Memory is allocated and not freed until that happens, so allocation 
behavior is stack-like. Instead of using the more general and therefore costly malloc() or the Java heap for class loader specific memory, use a 
lighter weight, stack like memory subsystem. In addition, all java.lang.Class objects can be stored in per-class loader memory instead of in the 
normal heap, reducing work for the GC subsystem.
Advantages: more efficient, makes class loader unloading easier
Disadvantages: if java.lang.Class objects are stored in per-loader memory, their references must be tracked manually.
Comments: this one is pretty much a no brainer
Origin: SableVM 

Bi-directional object layout

Idea: let objects' primitive fields grow upward from the object head and let reference fields grow downward from the object head. Object pointers 
pointing to objects themselves containing object references therefore point into the middle of the object's memory area.
Advantages: all object references are contiguous, which makes following these references during garbage collection, etc. easier and simpler.
Disadvantages: object head (lockword, vtable pointer, etc) is not necessarily at the beginning of an object's memory area, which can mean extra 
work to find the head when iterating through the heap e.g. during mark/sweep GC. Etiene notes that there is a performance degradation, mainly 
due to poor locality of this layout.
Origin: SableVM 

Spinless thin-locks

Idea: compare-and-swap instruction used to grab an object lock in the common case of no contention, otherwise fall back to mutexes.
Advantages: very efficient
Disadvantages: some assembly required
Comments: using some form of thin locks is a no-brainer
Origin: lots of people. SableVM has a nice version of this algorithm. 

SableVM thread state tracking

Idea: use compare-and-swap to transition threads from running in Java mode vs. running in native mode, and to detect a "stop the world" 
operation. When a Java thread goes into "native mode", i.e., it invokes a JNI function or some other blocking system call like pthread_cond_wait(),
it has to detach itself in some sense from the JVM so that the JVM doesn't get stuck waiting indefinitely for it to return.
Advantages: very efficient implementation for Java locking
Disadvantages: none known
Origin: SableVM 

Signals for thread notification

Idea: threads must periodically check whether they need to do something. Typically this is done at backward branches. To make this check 
efficient, have the thread read a byte from a well-known page of mmap()'d memory. When another thread wants the thread to check-in, it simply 
maps that page unreadable. The target thread gets a signal, it does whatever check required, the page is re-mapped readable, and the target 
thread returns from the signal and continues on its merry way.
Advantages: efficient way to enforce checking in
Disadvantages: requires mmap() and signals, signal latency can be an issue if the notification delay is critical, eg gc safepoints (see the paper 
from some Sun guys about this)
Origin: unknown/multiple; implemented in lots of places. 

Inline threaded interpreter

Idea: similar to a direct threaded interpreter, but in the preparation step copy the code segment of some opcodes instead of pointer + data.
Advantages: faster interpreter.
Disadvantages: deciding with code segments can be inlined is a non-trivial, non-portable issue. A conservative approach will result in worse 
performance.
Origin: SableVM


	JVM Implementation Ideas

