
PolicytoolDev
This page is part of the development documentation. It's about the architecture and methods used to implement .Policytool Policytool

Overview
The source of policytool is located in the package . The entry point is the Main class.org.apache.harmony.tools.policytool

The pattern was used to implement the tool.MVC (Model-View-Controller)
 package contains the classes modeling a policy file decomposed to entries and put into a tree or a list.The *model

 package contains the GUI elements of the user interface.The *view
 package contains the classes handling the policy files and policy syntax, and a main Controller class which handles the user interactions and The *control

connects the view and the model.

The model package
The base class of all entries is the class. Defines an abstract method to get set the string representation of a policy entry. There are basically 2 PolicyEntry
entry types (which are 3):
*GrantEntry: - this is used to define access and grant to various system resources.
*KeystoreEntry and URLEntry: these 2 define the location and other parameters of the keystoreKeystorePassword

The grant entries might include one or several principals and permissions which are represented with the respective classes (Principal and Permission).

In order to remember the real structure of the editable policy file, extra spaces and comments are stored in instances.CommentEntry

The view package
The frame of policytool is represented by the class. It contains a menu bar, a text field to display the edited policy file, and a tabbed pane for MainFrame
the 2 editor panel.

The editor panels are inherited from the class, which defines methods for setting/getting the edited policy text as a string, and provides an EditorPanel
interface to check if the panel contains unsaved changes. There are 2 subclasses of :EditorPanel
*DirectTextEditorPanel: provides a text area to view and edit the policy text as-is
*GraphicalEditorPanel: provides the well-known GUI with some improvements available with swing

The data inputs regarding to the policy text are handled via -s. This dialog provides some utility methods and the 2 common OK and BaseFormDialog
Cancel buttons. The classes profiting from :BaseFormDialog
*KeystoreEntryEditFormDialo: to view/edit data to locate the keystore
*GrantEntryFormDialog: to view/edit grant entries
*PrincipalEntryFormDialog: to view/edit principals
*PermissionEntryFormDialog: to view/edit permissions

Policytool contains several entities which has to be listed, has to be available for editing and removing, and provide an interface for adding new entities.
Such entities are grant entries, principals, permissions. The generic class is responsible to provide such an interface which is used ListAndEditPanel
parameterized when used for the listed entities.

The LAEFormDialog is a specialized which is intended to handle the data view/edit interface for entities available through a FormDialog ListAndEditPanel
component. The , and classes in fact are subclasses of the LAEFormDialog GrantEntryFormDialog PrincipalEntryFormDialog PermissionEntryFormDialog
class.

The class is a dialog class with a text area to store and display previous warning and error messages. New feature (compared to Sun's WarningLogDialog
policytool): the warning log dialog is non-modal which is a lot more useful here because we support direct editing, and switching between the editor panels
can generate errors/warnings frequently (not just when opening a new file or validating form values). The warning log can be open while we edit the policy
text in any editor. If we use the "View Warnign Log" menu while it's visible, it will be centered again.

The control package
The Controller class drives the GUI and connects it to the model. It is the handler of the menu items, and it is responsible to passing over the edited policy
text in case of editor panel switching. Handles the unsaved changes before certain operations (exit, open a new file, load a file).

The class is responsible to gain the policy text out of a policy file and to save a policy text to a policy file being aware of the mandatory PolicyFileHandler
UTF-8 encoding.

The class is responsible to parse a policy text, and return an equivalent list of policy entries from it. If the policy text is invalid, an PolicyTextParser InvalidPo
 will be thrown with a proper error message. Sun's policytool takes out all the comments from an opened policy file. It's a new feature that licyTextException

this parser parses and remembers comments between the entries in the policy text.

JIRA issues related to Policytool

https://cwiki.apache.org/confluence/display/HARMONY/Policytool
https://cwiki.apache.org/confluence/display/HARMONY/Policytool
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

*https://issues.apache.org/jira/browse/HARMONY-5952
*https://issues.apache.org/jira/browse/HARMONY-5949
*https://issues.apache.org/jira/browse/HARMONY-5944
*https://issues.apache.org/jira/browse/HARMONY-5927
*https://issues.apache.org/jira/browse/HARMONY-5912
*https://issues.apache.org/jira/browse/HARMONY-5898
*https://issues.apache.org/jira/browse/HARMONY-5886

Other links
Specification of the policy file: http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html

https://issues.apache.org/jira/browse/HARMONY-5952
https://issues.apache.org/jira/browse/HARMONY-5949
https://issues.apache.org/jira/browse/HARMONY-5944
https://issues.apache.org/jira/browse/HARMONY-5927
https://issues.apache.org/jira/browse/HARMONY-5912
https://issues.apache.org/jira/browse/HARMONY-5898
https://issues.apache.org/jira/browse/HARMONY-5886
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html

	PolicytoolDev

