
Terminology

VM core

The precise composition of the VM core is open to discussion and
debate. However, I think a safe, broad definition of it is that
part of the VM which brings together the major components such as
JITs, classloaders, scheduler, and GC. It's the hub in the wheel
and is responsible for the main VM bootstrap (bootstrapping the
classloader, starting the scheduler, memory manager, compiler etc).

VM init

The bootstrap of the VM has a number of elements to it, including
gathering command line arguments, and starting the various
components (above).

In the context of a Java-in-Java VM, the above is all written in Java.

VM boot image

The boot image is an image of a VM heap constructed ahead of time
and populated with Java objects including code objects corresponding
to the VM core and other elements of the VM necessary for the VM
bootstrap (all written in Java, compiled ahead of time, packaged
into Java objects and composed into a boot image). The boot image
construction phase requires a working host VM (ideally the VM is
self-hosting).

VM bootloader

In the case of Jikes RVM a dozen or so lines of assember and a few
lines of C are required to basically do the job of any boot loader
loader---mmap a boot image and throw the instruction pointer into
it. It will also marshal argv and make it available to the VM core.
This is technically interesting, but actually pretty trivial and has
little to do with the VM core (aside from ensuring the instruction
pointer lands a nice place within the boot image 

OS interface

The VM must talk to the OS (for file IO, signal handling, etc).
There is not a whole lot to it, but a Java wrapper around OS
functionality is required if the VM is java-in-java. This wrapper
is pretty trivial and one half of it will (by necessity) be written
in C.


	Terminology

