
AvailableLockFactories
When applying changes to an index the IndexWriter needs to acquire an exclusive lock on the Directory.

While both F{{`S}} `Directory have sensible defaults you might want to consider an alternative for finetuning of performance, or Directory and RAM
because you are storing the index on some multiple-node shared resource having issues with file based locking.

 Using an inappropriate LockFactory will have your index corrupted! Make sure you understood the Lock design.

Core LockFactory implementations
NativeFSLockFactory
NoLockFactory
SimpleFSLockFactory
SingleInstanceLockFactory
VerifyingLockFactory

Additional implementations of interest
Infinispan LockFactory

Core  implementationsLockFactory

NativeFSLockFactory

Qualified ClassName: org.apache.lucene.store.NativeFSLockFactory

This implementation is similar to Simple{{`F}}SLockFactory, they both extend FSLockFactory and rely on a lock file. This 
version relies on NIO and the lock files will be properly removed (by the OS) if the JVM has an abnormal exit, 

`S: make sure you read the javadocs for updated details. Because the lock is obtained for the current process different but should be avoided on NF
applications in the same J{{`V}}`M might not be excluded properly; Lucene makes an attempt to prevent this issue using a static reference to owned locks, 
but when loaded in an isolated classloader or when reloading the same web application this workaround is not effective.

NoLockFactory

Qualified ClassName: org.apache.lucene.store.NoLockFactory

As the name reminds, this LockFactory will not do anything. This is useful when you're sure that only one thread at a time will ever attempt to apply 
changes to the index. Using it could be reasonable when your application is designed in such a way, and you can also guarantee that no other processes 
will attempt to apply changes. If you're not sure to meet these rare requirements, avoid it.

SimpleFSLockFactory

Qualified ClassName: org.apache.lucene.store.SimpleFSLockFactory

This implementation is similar to Native{{`F}}SLockFactory, they both extend FSLockFactory and rely on a lock file. This is 
the default implementation of FSDirectory: it will write a lockfile to filesystem when the lock is acquired and 
delete the file when it's released, making it a safe choice for almost all configurations. The drawback of this 

`M holding the lock crashes that you have to manually remove the stale lock file.implementations is that it might happen when the JV

SingleInstanceLockFactory

Qualified ClassName: org.apache.lucene.store.SingleInstanceLockFactory

Uses an object instance to represent the lock, so this is usefull when you are certain that all modifications to the a given index are running against a single 
shared in-process Directory instance. This is currently the default locking for R{{`A}} `DirectMDirectory, but it could also make sense on a FS
ory provided the other processes use the index in read-only.

VerifyingLockFactory

Qualified ClassName: org.apache.lucene.store.VerifyingLockFactory

This Lock{{`Factory was designed to test other implementations, it's recommended to read it's javadocs and make use of it when you want to implement 
your own Lock}}`Factory.

#
#
#
#


Additional implementations of interest

Infinispan LockFactory

Qualified ClassName: org.infinispan.lucene.locking.LuceneLockFactory

Infinispan is an open source data grid platform written in Java: http://www.jboss.org/infinispan

It includes a distributed Directory implementation for Lucene and a Lock{{`Factory. While this Lock}}`Factory implementation was designed initially to be 
used with Infinispan Directory it might also be useful combined with other Directory implementations.

This Lock implementation uses Infinispan and J{{`Groups behind the scenes to provide auto-discovery at network level, making it interesting for both 
network shared Directories or local Directories shared by applications in multiple J}} `Ms to have a reliable lock independent from the file-system; when V
combined with it's sister Directory you also get nice dynamic reconfiguration features, as nodes will find each-other without having to maintain configuration 
files.

For more information refer to Infinispan's documentation, especially this .wiki page

 :TODO: add other implementations here 

#
http://www.jboss.org/infinispan
http://www.jboss.org/community/wiki/InfinispanasaDirectoryforLucene

	AvailableLockFactories

