
1.  

1.  

SpellChecker
SpellChecker

A Spell Checker allows to suggest a list of words similar to a misspelled word. This implementation is based on David Spencer's code using the n-gram 
method and the Levenshtein distance.

Structure of a dictionary index

An index (the dictionary) with all the possible words (a lucene index) must be created. The structure of this index is (for a 3-4 gram) this:

Index 
Structure

Example

word kings

gram3 kin, ing, 
ngs

gram4 king, ings

start3 kin

start4 king

end3 ngs

end4 ings

Import: Adding Words to the Dictionary

We can add the words coming from a Lucene Index (more precisely from a set of Lucene fields), and from a text file with a list of words.

Example: we can add all the keywords of a given Lucene field of my index.

SpellChecker spell= new SpellChecker(dictionaryDirectory);
spell.indexDictionary(new LuceneDictionary(my_luceneReader,my_fieldname));
 

Getting a List of Suggested Words

The suggestSimilar method returns a list of suggested words sorted by:

the Levenshtein distance (the most similar word to the misspelled word is the first in the list). 2. (optionally) the popularity of the word in a given 
Lucene Field. 

Furthermore, that list can be restricted only to the words present in a given Lucene Field.

First example: the suggestSimilar(misspelled_word, num_list) method.
The  is the maximum number of words returned.num_list
In this example the list is just sorted with the Levenshtein distance.

   String[] l=spellChecker.suggestSimilar("sevanty", 2);
   //l[0] = "seventy"
 

Second example: the suggestSimilar(misspelled_word, num_list, myIndexReader,myField, morePopular) : if myIndexReader and myField Note
are null this method is the same as the first method 

The returned words are restricted only to the words presents in the field  of the Lucene Index "myIndexReader" 2. The list is also myField
sorted with a second criterium: the popularity (the frequency) of the word in the user field 3. If  is true and the mispelled morePopular
word exists in the user field, return only the words more frequent than this. 
See the test case code for an example. 

Changes

Version 1.1 :

sort fixed (the sort was inversed!)



set gram dynamically (depending of the length of the word)
use the FuzzyQuery score: ((edit distance)/(length of word))
new Dictionary interface + LuceneDictionary and PlaintextDictionary implementation
replace addWords method by indexDictionary(Dictionnary dic)
add a new public method: boolean exist(word)
add a build.xml 

Credits

Maisonneuve Nicolas
Spencer David


	SpellChecker

