
SummerOfCode2011ProjectRankingTerrier
Return to main page

A short overview of Terrier's scoring architecture

Terrier is another Java-based, open source search engine developed at the School of Computing Science, University of Glasgow. It is positioned as a
platform for IR research, and as such, has an extensible ranking architecture, with many ranking functions, such as LM, BM25 and the DFR framework
already implemented. Therefore, it may be worthwhile to include a short summary and analysis of their architecture here.

The Terrier ranking architecture

The interface is top of the model () hierarchy.Model Similarity

WeightingModel: abstract implementation of . It duplicates the information in the and objects.Model CollectionStatistics EntryStatistics

Idf class as a member field
Query term frequency: keyFrequency
score() is abstract
2 {{score()}}s:

tf, docLen
tf, , , , docLen df tf(Corpus) keyFrequency
What I find strange in this implementation is that they felt the need for the second method. In case of e.g. BM25, the two-score()
parameter version takes the required values, such as , from , while some of these can be supported directly to the df WeightingModel
five-parameter method. However, the choice of parameters seems rather arbitrary.

There are two classes responsible for providing the statistical parameters to the model.
 stores the collection-level information.CollectionStatistics

numberOfFields
fieldTokens: tokens in each field
avgFieldLengths
numberOfDocuments
numberOfTokens
numberOfPointers: total number of pointers in the inverted file $= sum(df)$
numberOfUniqueTerms: $len(lexicon)$
averageDocumentLength

EntryStatistics contain some information about the term.

frequency: the total number of occurences (above)tf(Corpus)
df
term id

The models are rather simple: they override the scoring methods with their own formulas. There are also methods for setting the parameters (e.g. for b
BM25).

The last class of interest is . All kinds of idf functions are defined in it, such as , (seems to be buggy in 3.0), etc. I have two Idf idfDFR() idfENQUIRY
gripes with this:

For one, it gives the idea that if a new formula is added, its idf part should be implemented in this class. However, someone who just wants to use
the library may not feel like modifying a core class.
Also, even this idea is false. BM25, for instance, does not have its own method in ; it is computed in the class directly.idfBM25() Idf BM25

Idf also has methods that compute the logarithm of number(s). This is because they use log instead of log .2 n

There are several sub-hierarchies under . These will be introduced in the next sections.WeightingModel

The DFR Framework

DFRWeightingModel is the base class for the modular DFR framework. The scoring formula has been divided into three parts, following the original
paper:

BasicModel subclasses represent the basic randomness models.
AfterEffect subclasses compute the gain.
Normalisation is applied on the "raw" term frequencies before they are passed to the basic model.

These classes define their own custom interfaces, which have little in common with the interface of the class. It is an interesting WeightingModel
question if it is possible to maintain a consistent interface (e.g.) across scoring components and ranking frameworks.Similarity

It is worth mentioning that the basic model, aftereffect and normalization implementations are selected by class name and are initialized via the class
loader mechanism. This might or might not be necessary in Lucene.

Per-field Normalisation

https://cwiki.apache.org/confluence/display/LUCENE/SummerOfCode2011ProjectRanking
http://terrier.org/

Field-aware scoring algorithms are implemented as subclasses of . Currently two such models are implemented: PerFieldNormWeightingModel
BM25F and PL2F.

As far as I understand, per-field scoring is the default in Lucene, so this particular sub-hierarchy might not be of little interest to us.

Statistics availability in Lucene

The content of the class, i.e. the term statistics, is conveniently mirrored by the class. The relevant fields areEntryStatistics TermContext

docFreq corresponds to ,df
totalTermFreq corresponds to .frequency

If I understand correctly, these statistics are extracted from the index on the fly, per field, so they depend on the fields searched in the query.

Also, as far as goes, there is also .df IndexReader.docFreq()

Collection-level statistics seem to be harder to come by.

number of fields: , this statistic is only for normalization, which is performed outside of the in IndexReader.fields() BUT Similarity
Lucene; hence, we don't need it;
no. of tokens in a field: ; it's a bit different than the real length; it may be worth to have both, since the more IndexReader.getSumOfNorms()
options, the more possibilities to experiment with;
avg. field length: has to be computed as in from the no. of tokens in each field;MockBM25Similarity.avgDocumentLength()
no. of documents: (for some reason, is used in) from the context;IndexReader.numDocs() maxDoc() MockBM25Similarity
tf(Corpus): via ;TermsEnum.totalTermFreq() IndexReader.totalTermFreq()
no. of tokens: ;Terms.getSumTotalTermFreq()
no. of unique terms: via ;Terms.getUniqueTermCount() IndexReader.getUniqueTermCount()
average document length: has to be computed as in from the avg. field lengths. MockBM25Similarity.avgDocumentLength()

Conclusion

I have found the scoring hierarchy of Terrier very straightforward and easy to extend. However, I am not really convinced of the merits of the way idf is
handled. I would rather have separate , and (and maybe) parts that could be combined freely with each other. The obvious Tf Idf Query weight Smoothing
solution is to have separate class hierarchies (however flat) for all of them. This is up for debate, of course.

Return to main page

https://cwiki.apache.org/confluence/display/LUCENE/SummerOfCode2011ProjectRanking

	SummerOfCode2011ProjectRankingTerrier

