
RuleLifeCycle
Rule Life Cycle
The life-cycle of a rule goes like this.

A rule starts off in a developer's sandbox as an experimental rule, one that he doesn't want to publish just yet.
Alternatively, it may be a non-experimental, but still in-sandbox, testing rule. These need to be marked by the developer with "tflags publish".
The developer may decide to switch the rule back and forth between those two states.
Non-experimental rules' promotability is measured (see).SaUpdateBackend
If it's good enough, it's published to the "active set".
A good rule may be manually copied from the sandbox to the "rules" directory.
Eventually, it stops being good enough, through the normal attrition process for antispam rules, and it stops meeting the promotion criteria.

List Of Rule States

Rules in sandbox:

experimental – don't promote me. "T_" prefix in the rulesrc source file, "tflags nopublish", or the absence of a "tflags publish", implies this. These
rules are compiled, by the "build/mkrules" compiler at "make" time, to "rules/70_sandbox.cf".
s_poor – promotable, listed with "tflags publish", but not meeting promotion criteria. Compiled to "rules/70_sandbox.cf". "T_" is prefixed to the
rule name.
s_good – promotable, listed with "tflags publish", and meeting criteria. Rules in this state are copied into the "active set". Compiled to "rules
/72_active.cf".

Rules in the engine tarball:

core – no promotion criteria are needed; this is part of the core ruleset. Often tied closely to the distributed perl modules. Mail::SpamAssassin
These are not compiled at all by "build/mkrules", and are always distributed. (new as of bug 5123.)

Deleted rules:

gone – rule has been deleted. If a rule scores badly in core for "an extended period of time", it goes here. (Right now, this has to be done
manually.)

(History: , bug 5123)mailing list message

State Transitions

The permitted transitions for those rule states, therefore, are as follows:

experimental <---> s_poor
experimental <---> s_good
(hand copy) <---> s_good core
(hand copy) <---> core gone

List Of Build States

Some rules are only used from certain build states. Here are the list of states that goes through, or that rules are packaged as, during SpamAssassin
various parts of its build process.

builddir: "./spamassassin", or similar, run from inside build dir
make_test: "make test"
mass_check: run from inside "masses" dirMassCheck
bbtest: the testing buildbot
bbmass: the bbmass buildbot
nightly: the NightlyMassCheck
make_install: what's installed via "make install"
tarball: what's put in distributed tarballs (by make dist, make disttest)
sa_update: what's delivered via sa-update

Build States vs. Rule States Matrix

And here's the table listing what rules are usable, where. indicates that a rule in that state is indeed usable from the listed build state.

 experimental s_poor s_good core

builddir

make_test

 mass_check

https://cwiki.apache.org/confluence/display/SPAMASSASSIN/SaUpdateBackend
http://www.nabble.com/hackathon-notes-from-Sat-p1887702.html
https://cwiki.apache.org/confluence/display/SPAMASSASSIN/SpamAssassin
https://cwiki.apache.org/confluence/display/SPAMASSASSIN/MassCheck
https://cwiki.apache.org/confluence/display/SPAMASSASSIN/NightlyMassCheck

bbtest

bbmass

nightly

make_install

tarball

sa_update

	RuleLifeCycle

