
RunningGa
Running the GA to generate scores
As used in the process.RescoreMassCheck

Firstly, check that the rules and logs are both relatively clean and ready to use.

Copy/link the full source logs to "ham-full.log" and "spam-full.log" in the masses directory. Then:

cd masses

make clean
rm -rf ORIG NSBASE SPBASE ham-validate.log spam-validate.log ham.log spam.log
svn revert ../rules/50_scores.cf
ln -s ham-full.log ham.log
ln -s spam-full.log spam.log
make freqs SCORESET=3
less freqs

Go through the report in freqs and check:HitFrequencies

ALL_TRUSTED hitrate on spam. This should appear only in ham.
unfamiliar rules with high ham hitrates; they could be easily forgeable. comment them or mark them "tflags nopublish".
NO_RECEIVED hitrate in spam.
NO_RELAYS hitrate in spam.

Save a copy of freqs, then generate ranges:

cp freqs freqs.full
make > make.out 2>&1
less tmp/ranges.data

examine tmp/ranges.data and check:

ranges that are 0.000 0.000 0 for no obvious reason;
rules named with a "T_" prefix. These can sometimes slip through if used in promoted meta rules. They should be fixed to not include a "T_"
prefix in the rulesrc source file. (that should be the only way that a T_ rule will appear in the output; "real" sandbox T_ rules should be removed
already, since you deleted the sandbox rule file.)

To prepare your environment for running the rescorer:

 rm -rf ORIG NSBASE SPBASE ham-validate.log spam-validate.log ham.log spam.log
 mkdir ORIG
 for CLASS in ham spam ; do
 ln $CLASS-full.log ORIG/$CLASS.log
 for I in 0 1 2 3 ; do
 ln -s $CLASS.log ORIG/$CLASS-set$I.log
 done
 done

Score generation

Copy a config file from "config.set0"/"set1"/"set2"/"set3" to "config", and execute the runGA script. runGA generates and uses a randomly selected corpus
with 90% being used for training and 10% being used for testing.

You need to ensure an up-to-date version of perl is used. On the zone, this is /local/perl586.

export PATH=/local/perl586/bin:$PATH
nohup bash runGA &
tail -f nohup.out

monitor progress... once the GA is compiled, and starts running, if the FP%/FN% rates are too crappy, it may be worth CTRL-C'ing the runGA process and
running a new one "by hand" with different switches:

https://cwiki.apache.org/confluence/display/SPAMASSASSIN/RescoreMassCheck
https://cwiki.apache.org/confluence/display/SPAMASSASSIN/HitFrequencies

./garescorer -b 5.0 -s 100 -t 5.0

if you do this though you will have to cut and paste the post-GA commands (in the "POST-GA COMMANDS" section of runGA) by hand!

Once the GA run is complete, and you're happy with the accuracy: You will find your results in a directory of the form
"gen-$NAME-$HAM_PREFERENCE-$THRESHOLD-$EPOCHS-$NOTE-ga".

Compare the listed FP%/FN% rate on gen-*/test to gen-*/scores; gen-*/scores is the output from the perceptron, and should match within a few 0.1% to
gen-*/test output (which is computed on a separate subset of the mail messages). This checks:

that the mail messages are diverse enough to avoid overfitting (hence the different test and train sets)
that the FP%/FN% computations are not losing precision due to C-vs-Perl floating-point bugs, or a differing idea of what rules are promoted vs not
promoted between the C and Perl code.

Once you're satisfied, check in ../rules/50_scores.cf. Copy the "config" file back to "config.setN" where "N" is the current scoreset, and check that in. Then,
add a comment to the rescoring bugzilla bug, noting:

the "gen-*/test" file contents, with FP%/FN% rate
the "gen-*" path for later reference

next, carry on with other steps from (if that's what you're doing).RescoreMassCheck

PGAPack

To get garescorer to build with the above "make > make.out 2>&1" command on an Ubuntu Maverick machine, I installed the libpgapack-serial1 package,
and ran:

mkdir -p /local/pgapack-1.0.0.1/lib
ln -s /usr/lib /local/pgapack-1.0.0.1/lib/sun4
mkdir -p /local/pgapack-1.0.0.1
ln -s /usr/include/pgapack-serial /local/pgapack-1.0.0.1/include

The first symptom you are likely to see of this problem is the error:

time: cannot run ./garescorer: No such file or directory

To take advantage of multiple CPU cores, use pgapack-mpi (which appears to be), and run it as:broken on ubuntu

mpirun -np 4 ./garescorer -b 10 -e 5500 -t 5.0

Replace "4" with your number of CPU cores. Although it looks like this causes redundant processing instead of distributed load.

https://cwiki.apache.org/confluence/display/SPAMASSASSIN/RescoreMassCheck
https://bugs.launchpad.net/ubuntu/+source/pgapack/+bug/728217

	RunningGa

