
JMeterVariablesAndFunctions
Navigation Trail: - - /DeveloperDocumentationJMeterProjectPages JMeterDevelopment JMeterDevelopment

JMeter's are essentially specialized objects. For most elements, the JMeter engine can traverse through a Test Element and TestElements HashMap
parse all values within, looking for functions and/or user-defined variables. At the present, this is not perfect, so there are times when a function or variable
in a Test Element will not get processed, but for the most part, any function or variable appearing anywhere within any Test Element will be processed.

Top-level user-defined variables (ie those the user has defined in the gui object) are found and replaced at compile time, before the test actually TestPlan
starts running.

Functions and variables not found are essentially "marked" for processing at runtime. Essentially, any string value that the parser determines contains
functions and/or unknown variables is replaced in it's entirety by a object. The object is also responsible for CompoundFunction CompoundFunction
parsing these individual strings, looking for functions and variables.

Currently, the object performs a complex two-pass operation on each string. I believe this would be better off with a fully recursive CompoundFunction
algorithm that allowed more flexibility (ie functions within functions as parameters, etc).

At runtime, any flagged as "containing functions" is processed and the functions and unknown variables are resolved. This is done in the org.TestElement
apache.jmeter.threads.TestCompiler class. This is a simple procedure, as each function is simply asked to resolve itself. Functions and implementations of
org.apache.jmeter.testelement.ThreadListener are provided access to a class called org.apache.jmeter.threads.JMeterVariables, which is a holding area
for each thread to store variable values and other information during test run.

Simply by implementing the interface, any class can participate in storing and retrieving variables and their values. For this reason, making ThreadListener
an new Extractor object type should be easy - any Extractor will implement and store extracted values therein. These values will ThreadListener
automatically be inserted any time a user references the variable (ie ${varName}). Of course, this assumes the Extractor is told what variable name to
store it's info in (obviously, has to match the previous "varName").

https://cwiki.apache.org/confluence/display/JMETER/JMeterProjectPages
https://cwiki.apache.org/confluence/display/JMETER/JMeterDevelopment
https://cwiki.apache.org/confluence/display/JMETER/JMeterDevelopment
#
#
#
#
#
#
#
#
#

	JMeterVariablesAndFunctions

