
DocumentProcessing
(This page is a child of the page)TaskList

Problem
Solr would benefit from a flexible document processing framework meeting the requirements of enterprise grade content integration. Most search projects
have some need for processing the incoming content prior to indexing, for example:

Language identification
Text extraction (Tika)
Entity extraction and classification
Data normalization and cleansing
Routing
3rd party systems integration (e.g. enrich document from external source)
etc

The built-in is capable of doing simple simple processing jobs, but it is only built for local execution on the indexer node in UpdateRequestProcessorChain
the same thread. This means that any performance heavy processing chains will slow down the indexers without any way to scale out processing
independently. We have seen FAST systems with far more servers doing document processing than indexing.

There are many processing pipeline frameworks from which to get inspiration, such as the one in FAST ESP, , (now on), OpenPipeline OpenPipe GitHub Py
, , , , , , Findwise's yet-to-be-announced pipeline and others. Indeed, some of these are pes UIMA Eclipse SMILA Apache commons pipeline Piped Behemoth

already being used with Solr as a pre-processing server.

A choice of technologies is good, but it can be a bit too much and fragmented as well...

There have recently been interest within the search community for a true open source pipeline with a healthy community behind it and a rich pool of
processors. See from Lucene Eurocon 2010 as well as for thoughts from , as well as the recent solr-user thread this presentation this blog post FindWise Pi

 and Cominvent's talk at Lucene Eurocon 2011 . In addition to developing a true open source preferred peline for Solr Improving Solr's Update Chain
solution, it should also be possible to improve interoperability and compatibility.

Here are a few things that we could consider in order to ease this situation:

Start talking together and try find common ground, places to cooperate, consolidate etc
Develop a common Java interface which models a document processor, enabling cross-pipeline use of the same processor
Develop a Java wrapper for executing Python processors (reuse of ESP processors, Pypes processors and Piped processors) in a Java pipeline
Specify a common "Document" model which may be serialized between various components (Avro based?)
Establish a source repository (outside of the ASF) of reusable processors, maintained by a large community

Update: At Lucene Eurocon 2011 in Barcelona, formed an interest group for pipelines which has its home at we http://www.meetup.com/SearchPipelines/

Wishes for a Lucene targeted pipeline
Here are some thoughts and wishes for a new pipeline project mainly target at Lucene based search enginens (including Solr, and Lucene ElasticSearch
itself). It should probably build upon/fork one of the existing projects and best practices.

Key requirements

Must

Apache licensed
Java based
Lightweight (not over-engineered)
Support for multiple named pipelines, addressable at document ingestion
Support for a rich document format, including token streams (pre-analyzed content)
Support for metadata on document and field level (e.g. tokenized=true, language=en)
Well defined dead-simple API and SDK for the processing stages
Easy configuration of pipelines through separate config and GUI
Run standalone as well as embedded in another framework (such as Solr's)UpdateChain
Do not directly depend on Solr, but allow easy, tight integration with either Lucene or Solr

Should

SDK for stage developers - to encourage stage development
Easily debuggable and testable
Separate stages repository (e.g. a gitHub space, outside of ASF svn) to encourage sharing
Integration points for UIMA, , etcLingPipe OpenNLP
Be able to run Lucene's Tokenizers and Token Filters directly and ship this to Lucene as the new "pre-analyzed" field (see)SOLR-1535
Support for writing stages in JVM scripting languages such as Jython

https://cwiki.apache.org/confluence/display/SOLR/TaskList
#
http://www.openpipeline.org/
http://openpipe.berlios.de/
https://github.com/kolstae/openpipe
http://www.pypes.org/
http://www.pypes.org/
http://uima.apache.org/
http://www.eclipse.org/smila/
http://commons.apache.org/sandbox/pipeline/
http://www.piped.io/
https://github.com/jnioche/behemoth
http://2010.lucene-eurocon.org/slides/A-Pipeline-for-Solr_Charas-Jansson.pdf
http://findabilityblog.se/solr-processing-pipeline
#
http://search-lucene.com/m/pFegS7BQ7k2
http://search-lucene.com/m/pFegS7BQ7k2
http://www.slideshare.net/janhoy/improving-the-solr-update-chain
http://twitter.com/#!/cominvent/status/126997829121093632
http://www.meetup.com/SearchPipelines/
#
#
http://alias-i.com/lingpipe/
http://opennlp.sourceforge.net/
https://issues.apache.org/jira/browse/SOLR-1535

Could

GUI for configuring pipelines
Hot pluggable pipelines
Wrappers for custom FAST ESP stages to work with minor modification
Wrappers for custom stages to work with minor modificationUpdateProcessor
Robust - if a batch fails, it should re-schedule to another processor
Optimize for performance through e.g. batch support
Allow scaling out processing to multiple dedicated servers for heavy tasks. Cloud-friendly
Support status callbacks to the client

Anti-patterns
Do not over-architecture like Eclipse SMILA and others have done going crazy with ESB etc
Do not try to be a connector framework as well. Let ManifoldCF do that job. Focuson on the pipeline!
Do not keep the source private (although Apache licensed) as did with - create a community! DieselPoint OpenPipeline

Proposed architecture
Jan Høydahl: I think is a hot candidate to fork as a new open source framework. It already supports most of the above, is Apache licensed, and OpenPipe
is abandoned by its original developers.

Risks
TBD

Q&A

Your question here

Q: Is there a JIRA issue that tracks the Solr-side development of this?
A: Not yet
Q: How is this related to https://issues.apache.org/jira/browse/SOLR-2129?
A: SOLR-2129 is an for UIMA (see). Here we're talking about a new standalone framework and a way to integrate UpdateProcessor SolrUIMA
this and other existing pipelines cleanly with Solr/Lucene.
Q: Will the pipelines have to be linear. For instance, could we implement a first stage in the pipeline that would be a splitter. The splitter could, for
example, break up a large XML document into chapters, then push each chapter to the next stage where other processing will take place. In the
end, the Lucene index would have one document per chapter.
A: The new framework can be however we want it. If you talk about the Solr , we suggest in a way to support non linear UpdateChain SOLR-2841
chains. For splitting in chapters however, I think that a may be a better choice, see UpdateRequestHandler http://wiki.apache.org/solr

 /XsltUpdateRequestHandler
Q: How will the pipelines support compound files, e.g. archives, e-mail messages with attachments (which could be archives), etc.? This could be
a problem if pipelines are linear.
A: This is an open question. For the new pipeline framework, there are many possibilities, which must be discussed. If you're thinking about the
Solr , you have a choice whether your should understand the input format and do the splitting for you. But it UpdateChain UpdateRequestHandler
should also be possible to write an which splits the incoming into multiple sub documents - generating UpdateProcessor SolrInputDocument
unique IDs for each. You would somehow need to inject these sub documents again, either by using SolrJ from your or by UpdateProcessor
instantiating a "sub chain" in another thread to push the sub docs into the index. This is however, left as an exercise for the user

#
#
#
#
https://issues.apache.org/jira/browse/SOLR-2129?
#
http://wiki.apache.org/solr/SolrUIMA
#
https://issues.apache.org/jira/browse/SOLR-2841
https://cwiki.apache.org/confluence/display/SOLR/UpdateRequestHandler
http://wiki.apache.org/solr/XsltUpdateRequestHandler
http://wiki.apache.org/solr/XsltUpdateRequestHandler
#
https://cwiki.apache.org/confluence/display/SOLR/UpdateRequestHandler
#
#
#

	DocumentProcessing

