MakeSolrMoreSelfService

This is a collection of ideas about ways to make individual installations of Solr more "Self Service" for clients.
(A lot of these ideas come out of an informal discussion that happened at CNET a little while before Solr was open sourced. We were talking about things

that could be done so that all you needed to "discover" an installation of Solr - and what could be done with it - was a link to the /admin screen. From there
you could get all the info you needed without wondering where it might be documented externally.)

Misc
Some people feel that there should always be a guaranteed method for using the StandardRequestHandler — either by not specifiying a qt

(even if some other handler is configured with the name "standard") or by using gt=standard (and attempting to register any handler by that name is an
error)

Configuration

General Index Documentation

The <adni n> block of solrconfig.xml should allow for more high level documentation about what the index is, what it contains, who maintains it, and how
it's maintained. This info should be displayed on the / adm n screen. Something like this perhaps...

<adm n>
<mai nt ai ner emi | ="foo@ar.com' >Chris Hostetter</mintainer>
<l-- at least a mininmal subset of htm should be supported in

i ndexDescription -->
<i ndexDescri pti on>
<p>
Thi s index contains product data fromthe
per sonal el ectronics database.
It is built using the PEDBuil der, and updated hourly by the PEDUpdater.

</ p>

<p>

To see the npst recently published products, use the

pedf oo handl er </ a>
</ p>

</indexDescri ption>

<link href="http://docserver. bar. coni ped/sol r-index">i ndex desi gn</doc>

<link href="http://svn. bar. conf ped/ buil der/">buil der source code</doc>

<link href="http://svn. bar. con ped/ updat er/">updater source code</doc>
</ adm n>

Descriptions

Just about everything in solrconfig.xml and schema.xml file should support a descri pti on="..." free form text attribute to allow more exact (and
machine readable) documenting of why things are the way they are (without relying solely on XML comments).

Specific things that would really be handy to have this...

® schema.xml
o fieldtypes, analyzeries, tokenfactories, filterfactories.
© fields, dynamicFields, copyFields
© uniqueKey, defaultSearchField
O similarity
® solrconfig.xml
© caches, caching options
© updateHandler, listeners (postCommit)
O query listeners (newSearcher, firstSearcher)
© request handlers
© defaultQuery, pingQuery, healthcheck
Much of this info would make sense to be surfaced on the / admi n/regi stry.j sp JSP, some of it will come in handy in the suggestions below...

Request Handler Param Docs

In addition to the <i ni t > options that Query Handlers can use anyway they want, there should be a mechanism when registering handlers to specify what
query params it supports, with descriptions, and some basic info on how they should be displayed in a form.

https://cwiki.apache.org/confluence/display/SOLR/StandardRequestHandler

Perhaps something like...

<r equest Handl er nane="exanpl e" cl ass="nyorg. nypkg. MyRequest Handl er"
description="This is ny handler, it is not yours"

>
<par ans>
<par am nane="q"
description="main query, in lucene parser syntax"
type="text"
sanpl eval ue="+content: rad +aut hor: me" />
<param nane="sort"
description="sort options"
type="text"
sanpl eval ue="score desc nane asc" />
<par am nane="r ows"
descri ption="how nany rows you want back"
type="int"
sanpl eval ue="10" />
<par am nane="behavi or"
descri ption="what kind of behavior do you want?"
type="1list"
sanpl eval ue="a" >
<li val="a">Type A Behavior
<li val ="b">Sone other type of behavior</Ili>
<li val ="how now brown cow' /><!-- use val as |abel -->
</ par an»
</ par ans>
<l-- the rest of these options are init parans for the plugin -->

<i nt nanme="nypar ant >1000</i nt >
<fl oat name="ratio">1.4142135</fl oat >
<arr nanme="nyarr"><int >1</int><i nt >2</int></arr>
<str>foo</str>
</ request Handl er >

At first glance, it may seem like this info should be returned by some method in the SolrRequestHandler interface, but i think it makes more sense if the
person registering the handler gets to specify what options are "publicly" advertised for the specific instance of the handler.

Advanced Search Form

[adni n/ f orm j sp currently has a hard coded list of params, regardless of which plugin is used.

Assuming the param Configuration information described above is added to the solrconfig.xml, then the behavior of form.jsp could be driven by the <par am
s> specified for the default handler, and an optional qt param could change the params displayed based on the handler selected (e.g. f or m j sp?qt =f oo
). In this case, displaying the description of the handler would also be useful.

In addition, form.jsp should look at it's query params for any options that match the params of the specified qt and change the default form values
accordingly (this would allow people to link to the form with values that override the defaults)

The main / admi n screen should also be changed, so instead of (or in addition to) the "Full Interface" link to f or m j sp, there is a form with a pulldown
listing each handler gt option.

The bottom of f or m j sp may also be a good place to list all of the registered handlers, with their descriptions, and the info from the Sol r MBean interface
methods (or maybe this should be a separate page). Each should have a link back to f orm j sp?qt =t hei r _qt

Schema Explorer

Having a link to the schema. xni file from the / adm n screen is useful, but given the way fields can inherit/override options form their fieldtype, it's not
always easy to understand what you are looking at.

A Schema Explorer page should exist, with features like...

® Jist all field types "with details"

® Jist of field types "with details" by major option...
© indexed

stored

termVectors

multivValued

0]
0]
0]
© omitNorms

® list of all field type backing classes (i.e. SortablelntField, DateField, TextField, etc...) found in a fieldtype. For each class provide a list of all
fieldtypes "with details" using that class.

® list of all fields "with details"

® Jist of all dynamic fields "with details"

Whenever a field type is displayed "with details", show...

the description
backing class
options (i.e.: om t Nor s, st or ed, posi ti onl ncri nent Gap, etc...)
analyzer and/or tokenizerffilter chain if they exist
© descriptions of each if they exist
* Alist of the fields that using this fieldtype (with some indication whether they override any options) and a link to their details.

Whenever a field (or dynamic field) is displayed "with details", show...

the description
the fieldtype
the backing class
options (whether explicit, or inherited from fieldtype)
analyzer and/or tokenizerffilter chain if they exist
© descriptions of each if they exist
list of any fields that this field copies from
list of any fields that this field copies to
® link to anal ysi s. j sp for this field (this should work even with suffix/prefix dynamic fields)

Similarity Info

similarity.jsp

Along the same links as anal ysi s. j sp, it would be useful if there was a simple URL that helped understand what the registered Si m | ari t y class was
doing. Each of the methods could be represented by a small form for entering inputs, and the results of the function calls would be returned.

In the case of | engt hNor m both the raw value returned, as well as the value after it has been passed through decodeNor n(encodeNor (| engt hNor m
(...))) should be returned.

For functions ("f") that take in integer or float arguments, the form should allow a min/max/increment triples to be specified, and should return the list
resulting from...

for (int i = mn; i <= max; i+=increnent) {
list.add(f(i));
}

...s0 that it's easy to see what the functions do across a range of values.

If we really wanted to go all out, we could pick a graphing library to include as an optional jar, and if it's installed display graphs of the values between min
/max

analysis.jsp changes

When displaying the tokens resulting from “Indexing" analysis, the number of tokens (and the field name) could be passed to decodeNor n{ encodeNor m
(l'engt hNorm(...))) to display what the lengthNorm would be for documents that had that text as it's whole value. (this should check omi t Nor ns for
the specified field of course).

When displaying the the tokens resulting from "Query" analysis, the idf for each Term (and the idf form all of the terms as a phrase) can be displayed.

	MakeSolrMoreSelfService

