
PacktBook2009
https://www.packtpub.com/sites/default/files/imagecache/productview/bookimages/5883_MockupCover.jpg

Book Info
Title Solr 1.4 Enterprise Search Server

Publisher Packt

Language English

Format Paperback

Release date August 2009

ISBN 10 1847195881

ISBN 13 978-1-847195-88-3

Authors David Smiley, Eric Pugh

Pages 336

Dimensions 191mm x 235mm

The first comprehensive resource guide on Solr, written and tested for the 1.4 version. Essential reading for developers, this book covers nearly every
feature with a tutorial approach and realistic examples.

Available For Purchase...

Directly from Packt (A portion of proceeds are donated to the ASF)
From Amazon

Addendum
This book aimed to cover all the features in Solr 1.4 but some features were overlooked at the time of writing or were implemented after the book was
published. This document is a listing of the missed content organized by the chapter it would most likely have been added to. There are some other known
"features" in Solr that are not in the book and aren't here because they are either internal to Solr or have dubious purpose or value.

Chapter 2: Schema and Text Analysis

Trie based field types

The schema.xml used in the book examples has a schema version 1.1 instead of 1.2 which is Solr 1.4's new default. The distinction is fairly trivial. The
bigger difference is that Solr 1.4 defines a set of "Trie" based field types which are used in preference to the "Sortable" based ones. For example, there is
now a using a field type named which is to be used in preference to with a field type named . The trie TrieIntField tint SortableIntField sint
field types have improved performance characteristics, particularly for range queries, and they are of course sortable. However, the "Sortable" field
variants still do one thing that the trie based fields cannot do which is the ability to specify and . There is further sortMissingLast sortMissingFirst
documentation about these field types in the .Solr 1.4 example schema.xml file

Text Analysis

ReverseWildcardFilter

There is support for leading wildcards when using . See that link for some configuration options. For example, using this filter ReverseWildcardFilterFactory
allows a query to match the text . It essentially works by reversing the words as indexed variants. Be aware that this can more than *book cookbook
double the number of indexed terms for the field and thus increase the disk usage proportionally. For a configuration snippet using this feature, consider
this sample field type definition excerpted from the unit tests:

https://www.packtpub.com/sites/default/files/imagecache/productview/bookimages/5883_MockupCover.jpg
http://www.packtpub.com/solr-1-4-enterprise-search-server?utm_source=http%3A%2F%2Flucene.apache.org%2Fsolr%2F&utm_medium=spons&utm_content=pod&utm_campaign=mdb_000275
http://www.amazon.com/Solr-1-4-Enterprise-Search-Server/dp/1847195881/
http://svn.apache.org/viewvc/lucene/solr/tags/release-1.4.0/example/solr/conf/schema.xml?revision=834197&view=markup
http://lucene.apache.org/solr/api/org/apache/solr/analysis/ReversedWildcardFilterFactory.html

 <fieldtype name="srev" class="solr.TextField">
 <analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ReversedWildcardFilterFactory" withOriginal="true"
 maxPosAsterisk="3" maxPosQuestion="2" maxFractionAsterisk="0.33"/>
 </analyzer>

 <analyzer type="query">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>

 </analyzer>
 </fieldtype>

An interesting under-the-hood detail is that this filter requires the Solr query parsing code to check for the presence of this filter to change its behavior –
something not true for any other filter.

ASCIIFoldingFilter

For mapping of non-ascii characters to reasonable ASCII equivalents use which is best documented .ASCIIFoldingFilterFactory here

WordDelimiterFilter

There are a couple extra options for this filter not covered in the book. One is an option which is either 1 to enable (the stemEnglishPossessive
default) or 0. When enabled it strips off trailing on words. For example "O'Neil's" becomes "O", "Neil". Another point is that this filter supports the same 's p

 attribute that the stemmer filters do so that you can exclude certain input tokens listed in a configuration file from word delimiter processing.rotected

Misc

copyField maxChars

The copyField directive in the schema can contain an optional attribute which puts a cap on the number of characters copied. This is useful for maxChars
copying potentially large text fields into a catch-all searched field.

ExternalFileField

There is a field type you can use called that only works when referenced in function queries. As its name suggests, its data is in an ExternalFileField
external file instead of in the index. It's suitability is only for manipulating boosts of a document without requiring re-indexing the document. There is some r

 but you'll want to search for further info.udimentary javadocs solr's mailing list

Chapter 3: Indexing Data

Duplicate detection

In some Solr usage situations you may need to prevent duplication where documents that are the same could get added. This is called . This deduplication
doesn't have to do with your unique key field, it is for when there is some other text field(s) that should be unique, perhaps from a crawled file. This feature
is .documented on Solr's wiki

Automatically Committing

The book discusses how to explicitly commit added data. Solr can also be configured to automatically commit. This feature is particularly useful when
updating the index with changed data as it occurs externally.

autoCommit

In solrconfig.xml there is an <updateHandler> configuration element. Within it there is the following XML commented in the default configuration:

 <autoCommit>
 <maxDocs>10000</maxDocs>
 <maxTime>1000</maxTime>
 </autoCommit>

You can specify and/or depending on your needs. simply sets a threshold at which a commit happens if there are this many maxDocs maxTime maxDocs
documents not yet committed. Most useful is (milliseconds) which essentially sets a count-down timer from the first document added after the maxTime
previous commit for a commit to occur automatically. The only problem with using these is that it can't be disabled, which is something you might want to
do for bulk index loads. Instead, consider described below.commitWithin

commitWithin

http://lucene.apache.org/java/2_9_1/api/all/org/apache/lucene/analysis/ASCIIFoldingFilter.html
http://lucene.apache.org/solr/api/org/apache/solr/schema/ExternalFileField.html
http://lucene.apache.org/solr/api/org/apache/solr/schema/ExternalFileField.html
http://www.lucidimagination.com/search/?q=ExternalFileField
https://cwiki.apache.org/confluence/display/SOLR/Deduplication

When submitting documents to Solr, you can include a "commitWithin" attribute placed on the XML element. When >= 0, this tells Solr to perform <add/>
a commit no later than this number of milliseconds relative to the time Solr finishes processing the data. Essentially it acts as an override to solrconfig.xml /
updateHandler / autoCommit / maxTime.

Misc

I'd like to simply re-emphasize that the book covered the fairly lightly. For the latest documentation, .DataImportHandler go to Solr's wiki

ContentStreamDataSource

One unique way to use the is using the . It is like the except that instead of the DataImportHandler ContentStreamDataSource URLDataSource
DIH going out to fetch the XML, XML can be POST'ed to the DIH from some other system (i.e. pull vs push). Coupled together with the DIH's XSLT
support, this is fairly powerful. The following is a snippet of and then an entire DIH configuration file, referencing this type solrconfig.xml DataSource
and using XSL.

 <requestHandler name="/update/musicbrainz" class="org.apache.solr.handler.dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config">dih-musicbrainz-post-config.xml</str>
 <str name="optimize">false</str>
 <str name="clean">false</str>
 <str name="command">full-import</str>
 </lst>
 </requestHandler>

 <dataConfig>
 <dataSource type="ContentStreamDataSource" />
 <document>
 <entity name="mentity"
 xsl="xslt/musicbrains2solr.xsl"
 useSolrAddSchema="true"
 processor="XPathEntityProcessor">
 </entity>
 </document>
</dataConfig>

Chapter 5: Enhanced Searching

QParserPlugin and LocalParams syntax and subqueries Another modification Solr has to Lucene's query syntax which is the use of {{!qparser
}. That is, at the very beginning of a query you can use this syntax to indicate a different query name=value name2=value2} yourquery

parser (optionally) and specify some so-called "local params" name-value pairs too (again, optionally), used for certain advanced cases. Solr's wiki
has a bit more information on this. And in addition, there is a pseudo field hack in the query syntax to support subqueries which is useful query
when used with the aforementioned QParserPlugin syntax to change the query type. Aside from Solr's wiki, you will also find this blog post by

 enlightening.Yonik

Function queries

The main reference for function queries is . The following are the ones not covered in the book:here at Solr's wiki

sub(x,y) Subtracts: x - y

query(subquery,default) This one is a bit tough to understand. It yields the for this document as found from the given sub-query, defaulting score
to the 2nd argument if not found in that query. There are some interesting examples on the wiki.

ms(), ms , ms(x,y) The function deals with times in milliseconds since the common 1970 epoch. Arguments either refer to a date field or it is ms
a literal (ex: 2000-01-01T00:00:00Z). Without arguments it returns the current time. One argument will return the time referenced, probably a field
reference. When there are two, it returns the difference . This function is useful when boosting more recent documents sooner. There is x-y
excellent information on this subject .at the wiki

Function Range Queries Functions Queries can also be used for filtering searches. Using the QParserPlugin, you specify a numeric frange
range applied on the given function query. This advanced technique is best described at at Lucid Imationation.Yonik's blog post

Chapter 6: Search Components

Clustering Component

https://cwiki.apache.org/confluence/display/SOLR/DataImportHandler
#
http://www.lucidimagination.com/blog/2009/03/31/nested-queries-in-solr/
http://www.lucidimagination.com/blog/2009/03/31/nested-queries-in-solr/
http://wiki.apache.org/solr/FunctionQuery
https://cwiki.apache.org/confluence/display/SOLR/SolrRelevancyFAQ#SolrRelevancyFAQ-How_can_I_boost_the_score_of_newer_documents
http://www.lucidimagination.com/blog/2009/07/06/ranges-over-functions-in-solr-14/

This is a Solr "contrib" module and was incorporated in the Solr 1.4 distribution near the end of the book's release. This component will "cluster" the search
results based on statistical similarity of terms. It uses the open-source project as the implementation of the underlying algorithm. Clustering is Carrot2
useful for large text-heavy indexes, especially when there is little/no structural information for faceting.

More details: ClusteringComponent

Chapter 7: Deployment

XInclude The file can be broken up into pieces and then included using the spec. An example of this is the following solrconfig.xml XInclude
line:

 <xi:include href="solr/conf/solrconfig_master.xml" xmlns:xi="http://www.w3.org/2001/XInclude"/>

This is particularly useful when there are multiple Solr cores that require only slightly different configurations. The common parts could be put into
a file that is included into each config. There is at Solr's wiki.more information about this

Chapter 8: Integrating Solr

VelocityResponseWriter

Solr incorporates a contrib module called] (AKA Solritas). By using a special request handler, you can rapidly construct user web front-Apache Velocity
ends using the [templating system. It isn't expected that you would build sites with this, just proof-of-concepts.http://velocity.apache.org/

AJAX-Solr forks from is another option for browser integration with Solr. Unlike (from which it derives), AJAX-SolrJs AJAX Solr JavaScript SolrJs
Solr is not tied to JQuery or any other framework for that matter.JavaScript

Native PHP support PHP5 now has a for interacting with Solr.client API

Chapter 9: Scaling Solr

partial optimize If the index is so large that optimizes are taking longer than desired or using more disk space during optimization than you can
spare, consider adding the parameter to the optimize command. In the XML message, this would be an attribute; the URL form maxSegments
and SolrJ have the corresponding option too. By default this parameter is 1 since an optimize results in a single Lucene "segment". By setting it
larger than 1 but less than the , you permit partial optimization to no more than this many segments. Of course the index won't be mergeFactor
fully optimized and therefore searches will be slower.

http://project.carrot2.org
https://cwiki.apache.org/confluence/display/SOLR/ClusteringComponent
http://www.w3.org/TR/xinclude/
https://cwiki.apache.org/confluence/display/SOLR/SolrConfigXml#SolrConfigXml-XInclude
https://cwiki.apache.org/confluence/display/SOLR/VelocityResponseWriter
http://velocity.apache.org/
https://cwiki.apache.org/confluence/display/SOLR/SolrJS
http://wiki.github.com/evolvingweb/ajax-solr
https://cwiki.apache.org/confluence/display/SOLR/JavaScript
https://cwiki.apache.org/confluence/display/SOLR/SolrJS
https://cwiki.apache.org/confluence/display/SOLR/JavaScript
http://us3.php.net/manual/en/book.solr.php

	PacktBook2009

