
SolrCloud
{{{#!wiki red/solid This page is outdated and you should read about at the Solr Reference Guide instead:SolrCloud https://cwiki.apache.org

. /confluence/display/solr/SolrCloud
}}}

http://people.apache.org/~markrmiller/2shard4serverFull.jpg

SolrCloud
A little about SolrCores and Collections

Getting Started
Example A: Simple two shard cluster
Example B: Simple two shard cluster with shard replicas
Example C: Two shard cluster with shard replicas and zookeeper ensemble

ZooKeeper
Managing collections via the Collections API
Collection Aliases
Creating cores via CoreAdmin
Distributed Requests
Required Config

schema.xml
solrconfig.xml
solr.xml

Re-sizing a Cluster
Near Realtime Search
Parameter Reference

Cluster Params
SolrCloud Instance Params
SolrCloud Instance ZooKeeper Params
SolrCloud Core Params

Getting your Configuration Files into ZooKeeper
Config Startup Bootstrap Params
Command Line Util

Examples
Scripts

Zookeeper chroot
Known Limitations
Glossary
FAQ

SolrCloud

SolrCloud is the name of a set of new distributed capabilities in Solr. Passing parameters to enable these capabilities will enable you to set up a highly
available, fault tolerant cluster of Solr servers. Use when you want high scale, fault tolerant, distributed indexing and search capabilities.SolrCloud

Look at the following 'Getting Started' section to quickly learn how to start up a cluster. There are 3 quick examples to follow, each showing how to startup
a progressively more complicated cluster. After checking out the examples, consult the following sections for more detailed information as needed.

A little about and CollectionsSolrCores

On a single instance, Solr has something called a that is essentially a single index. If you want multiple indexes, you create multiple . SolrCore SolrCores
With , a single index can span multiple Solr instances. This means that a single index can be made up of multiple 's on different SolrCloud SolrCore
machines. We call all of these that make up one logical index a collection. A collection is a essentially a single index that spans many 's,SolrCores SolrCore
both for index scaling as well as redundancy. If you wanted to move your 2 Solr setup to , you would have 2 collections, each made up SolrCore SolrCloud
of multiple individual .SolrCores

Getting Started

Download Solr 4-Beta or greater: http://lucene.apache.org/solr/downloads.html

If you haven't yet, go through the simple to familiarize yourself with Solr. Note: reset all configuration and remove documents from the tutorial Solr Tutorial
before going through the cloud features. Copying the example directories with pre-existing Solr indexes will cause document counts to be off.

Solr embeds and uses Zookeeper as a repository for cluster configuration and coordination - think of it as a distributed filesystem that contains information
about all of the Solr servers

If you want to use a port other than 8983 for Solr, see the note about solr.xml under Parameter Reference below.

Example A: Simple two shard cluster

http://people.apache.org/~markrmiller/2shard2server.jpg

This example simply creates a cluster consisting of two solr servers representing two different shards of a collection.

http://people.apache.org/~markrmiller/2shard4serverFull.jpg
#
#
#
#
#
#
#
#
http://lucene.apache.org/solr/downloads.html
http://lucene.apache.org/solr/tutorial.html
http://people.apache.org/~markrmiller/2shard2server.jpg

Since we'll need two solr servers for this example, simply make a copy of the example directory for the second server – making sure you don't have any
data already indexed.

rm -r example/solr/collection1/data/*

cp -r example example2

This command starts up a Solr server and bootstraps a new solr cluster.

cd example

java -Dbootstrap_confdir=./solr/collection1/conf -Dcollection.configName=myconf -DzkRun -DnumShards=2 -jar
start.jar

-DzkRun causes an embedded zookeeper server to be run as part of this Solr server.
-Dbootstrap_confdir=./solr/collection1/conf Since we don't yet have a config in zookeeper, this parameter causes the local
configuration directory to be uploaded as the "myconf" config. The name "myconf" is taken from the "collection.configName" ./solr/conf
param below.
-Dcollection.configName=myconf sets the config to use for the new collection. Omitting this param will cause the config name to default to
"configuration1".
-DnumShards=2 the number of logical partitions we plan on splitting the index into.

Browse to to see the state of the cluster (the zookeeper distributed filesystem).http://localhost:8983/solr/#/~cloud

You can see from the zookeeper browser that the Solr configuration files were uploaded under "myconf", and that a new document collection called
"collection1" was created. Under collection1 is a list of shards, the pieces that make up the complete collection.

Now we want to start up our second server - it will automatically be assigned to shard2 because we don't explicitly set the shard id.

Then start the second server, pointing it at the cluster:

cd example2

java -Djetty.port=7574 -DzkHost=localhost:9983 -jar start.jar

-Djetty.port=7574 is just one way to tell the Jetty servlet container to use a different port.
-DzkHost=localhost:9983 points to the Zookeeper ensemble containing the cluster state. In this example we're running a single Zookeeper
server embedded in the first Solr server. By default, an embedded Zookeeper server runs at the Solr port plus 1000, so 9983.

If you refresh the zookeeper browser, you should now see both shard1 and shard2 in collection1. View .http://localhost:8983/solr/#/~cloud

Next, index some documents. If you want to whip up some Java you can use the solrj impl and simply init it with the address to CloudSolrServer ZooKeeper
. Or simply randomly choose which instance to add documents too - they will be automatically forwarded to where they belong:

cd exampledocs

java -Durl=http://localhost:7574/solr/collection1/update -jar post.jar ipod_video.xml

java -Durl=http://localhost:8983/solr/collection1/update -jar post.jar monitor.xml

java -Durl=http://localhost:7574/solr/collection1/update -jar post.jar mem.xml

And now, a request to either server results in a distributed search that covers the entire collection:

http://localhost:8983/solr/collection1/select?q=*:*

If at any point you wish to start over fresh or experiment with different configurations, you can delete all of the cloud state contained within zookeeper by
simply deleting the solr/zoo_data directory after shutting down the servers.

Example B: Simple two shard cluster with shard replicas

http://people.apache.org/~markrmiller/2shard4server.jpg

This example will simply build off of the previous example by creating another copy of shard1 and shard2. Extra shard copies can be used for high
availability and fault tolerance, or simply for increasing the query capacity of the cluster.

First, run through the previous example so we already have two shards and some documents indexed into each. Then simply make a copy of those two
servers:

http://localhost:8983/solr/#/~cloud
http://localhost:8983/solr/#/~cloud
#
#
http://localhost:8983/solr/collection1/select?q=*:*
http://people.apache.org/~markrmiller/2shard4server.jpg

cp -r example exampleB

cp -r example2 example2B

Then start the two new servers on different ports, each in its own window:

cd exampleB

java -Djetty.port=8900 -DzkHost=localhost:9983 -jar start.jar

cd example2B

java -Djetty.port=7500 -DzkHost=localhost:9983 -jar start.jar

Refresh the zookeeper browser page and verify that 4 solr nodes are up, and that each shard has two replicas.Solr Zookeeper Admin UI

Because we have been telling Solr that we want two logical shards, starting instances 3 and 4 are assigned to be additional replicas of those shards
automatically.

Now send a query to any of the servers to query the cluster:

http://localhost:7500/solr/collection1/select?q=*:*

Send this query multiple times and observe the logs from the solr servers. You should be able to observe Solr load balancing the requests (done via
LBHttpSolrServer ?) across replicas, using different servers to satisfy each request. There will be a log statement for the top-level request in the server the
browser sends the request to, and then a log statement for each sub-request that are merged to produce the complete response.

To demonstrate fail-over for high availability, press CTRL-C in the window running any one of the Solr servers . except the instance running ZooKeeper
(We'll talk about redundancy in Example C.) Once that server instance terminates, send another query request to any of the remaining servers ZooKeeper
that are up. You should continue to see the full results.

SolrCloud can continue to serve results without interruption as long as at least one server hosts every shard. You can demonstrate this by judiciously
shutting down various instances and looking for results. If you have killed all of the servers for a particular shard, requests to other servers will result in a
503 error. To return just the documents that are available in the shards that are still alive (and avoid the error), add the following query parameter: shards.
tolerant=true

SolrCloud uses leaders and an overseer as an implementation detail. This means that some nodes/replicas will play special roles. You don't need to worry
if the instance you kill is a leader or the cluster overseer - if you happen to kill one of these, automatic fail over will choose new leaders or a new overseer
transparently to the user and they will seamlessly takeover their respective jobs. Any Solr instance can be promoted to one of these roles.

Example C: Two shard cluster with shard replicas and zookeeper ensemble

http://people.apache.org/~markrmiller/2shard4server2.jpg

The problem with example B is that while there are enough Solr servers to survive any one of them crashing, there is only one zookeeper server that
contains the state of the cluster. If that zookeeper server crashes, distributed queries will still work since the solr servers remember the state of the cluster
last reported by zookeeper. The problem is that no new servers or clients will be able to discover the cluster state, and no changes to the cluster state will
be possible.

Running multiple zookeeper servers in concert (a zookeeper ensemble) allows for high availability of the zookeeper service. Every zookeeper server
needs to know about every other zookeeper server in the ensemble, and a majority of servers are needed to provide service. For example, a zookeeper
ensemble of 3 servers allows any one to fail with the remaining 2 constituting a majority to continue providing service. 5 zookeeper servers are needed to
allow for the failure of up to 2 servers at a time.

For production, it's recommended that you run an external zookeeper ensemble rather than having Solr run embedded zookeeper servers. You can read
more about setting up a zookeeper ensemble . For this example, we'll use the embedded servers for simplicity.here

First, stop all 4 servers and then clean up the zookeeper data directories for a fresh start.

rm -r example*/solr/zoo_data

We will be running the servers again at ports 8983,7574,8900,7500. The default is to run an embedded zookeeper server at hostPort+1000, so if we run
an embedded zookeeper on the first three servers, the ensemble address will be .localhost:9983,localhost:8574,localhost:9900

As a convenience, we'll have the first server upload the solr config to the cluster. You will notice it block until you have actually started the second server.
This is due to zookeeper needing a quorum before it can operate.

http://localhost:8983/solr/#/~cloud
http://localhost:7500/solr/collection1/select?q=*:*
#
#
http://people.apache.org/~markrmiller/2shard4server2.jpg
http://zookeeper.apache.org/doc/r3.3.4/zookeeperStarted.html

1.

2.
3.

cd example

java -Dbootstrap_confdir=./solr/collection1/conf -Dcollection.configName=myconf -DzkRun -DzkHost=localhost:9983,
localhost:8574,localhost:9900 -DnumShards=2 -jar start.jar

cd example2

java -Djetty.port=7574 -DzkRun -DzkHost=localhost:9983,localhost:8574,localhost:9900 -jar start.jar

cd exampleB

java -Djetty.port=8900 -DzkRun -DzkHost=localhost:9983,localhost:8574,localhost:9900 -jar start.jar

cd example2B

java -Djetty.port=7500 -DzkHost=localhost:9983,localhost:8574,localhost:9900 -jar start.jar

Now since we are running three embedded zookeeper servers as an ensemble, everything can keep working even if a server is lost. To demonstrate this,
kill the exampleB server by pressing CTRL+C in it's window and then browse to the to verify that the zookeeper service still Solr Zookeeper Admin UI
works.

Note that when running on multiple hosts, you will need to set on each host to the exact name and port used in – -DzkRun=hostname:port -DzkHost
the default will not work.localhost

ZooKeeper

Multiple Zookeeper servers running together for fault tolerance and high availability is called an ensemble. For production, it's recommended that you run
an external zookeeper ensemble rather than having Solr run embedded servers. See the site for more information on downloading and Apache ZooKeeper
running a zookeeper ensemble. More specifically, try and . It's actually pretty simple to get going. You can stick to having Getting Started ZooKeeper Admin
Solr run , but keep in mind that a cluster is not easily changed dynamically. Until further support is added to , changes ZooKeeper ZooKeeper ZooKeeper
are best done with rolling restarts. Handling this in a separate process from Solr will usually be preferable.

When Solr runs an embedded zookeeper server, it defaults to using the solr port plus 1000 for the zookeeper client port. In addition, it defaults to adding
one to the client port for the zookeeper server port, and two for the zookeeper leader election port. So in the first example with Solr running at 8983, the
embedded zookeeper server used port 9983 for the client port and 9984,9985 for the server ports.

In terms of trying to make sure is setup to be very fast, keep a few things in mind: Solr does not use intensively - optimizations may ZooKeeper ZooKeeper
not be necessary in many cases. Also, while adding more nodes will help some with read performance, it will slightly hurt write performance. ZooKeeper
Again, Solr does not really do much with when your cluster is in a steady state. If you do need to optimize , here are a few helpful ZooKeeper ZooKeeper
notes:

ZooKeeper works best when it has a dedicated machine. is a timely service and a dedicated machine helps ensure timely responses. ZooKeeper
A dedicated machine is not required however.
ZooKeeper works best when you put its transaction log and snap-shots on different disk drives.
If you do colocate with Solr, using separate disk drives for Solr and will help with performance. ZooKeeper ZooKeeper

Managing collections via the Collections API

The collections API let's you manage collections. Under the hood, it generally uses the API to asynchronously (though Overseer) manage CoreAdmin SolrC
 on each server - it's essentially sugar for actions that you could handle yourself if you made individual API calls to each server you wanted ores CoreAdmin

an action to take place on.

Create http://localhost:8983/solr/admin/collections?action=CREATE&name=mycollection&numShards=3&replicationFactor=4

About the params:

name: The name of the collection to be created.
numShards: The number of logical shards (sometimes called slices) to be created as part of the collection.
replicationFactor: The number of copies of each document (or, the number of physical replicas to be created for each logical shard of the
collection.) A replicationFactor of 3 means that there will be 3 replicas (one of which is normally designated to be the leader) for each logical
shard. NOTE: in Solr 4.0, replicationFactor was the number of *additional* copies as opposed to the total number of copies.
maxShardsPerNode : A create operation will spread numShards*replicationFactor shard-replica across your live Solr nodes - fairly distributed,
and never two replica of the same shard on the same Solr node. If a Solr is not live at the point in time where the create operation is carried out, it
will not get any parts of the new collection. To prevent too many replica being created on a single Solr node, use maxShardsPerNode to set a limit
for how many replicas the create operation is allowed to create on each node - default is 1. If it cannot fit the entire collection
numShards*replicationFactor replicas on you live Solrs it will not create anything at all.

http://localhost:8983/solr/#/~cloud
#
http://zookeeper.apache.org/
http://zookeeper.apache.org/doc/r3.3.4/zookeeperStarted.html
http://zookeeper.apache.org/doc/r3.3.4/zookeeperAdmin.html
#
#
#
#
#
#
#
#
#
#
#
#
#
https://cwiki.apache.org/confluence/display/SOLR/CoreAdmin
#
#
https://cwiki.apache.org/confluence/display/SOLR/CoreAdmin
http://localhost:8983/solr/admin/collections?action=CREATE&name=mycollection&numShards=3&replicationFactor=4

createNodeSet: If not provided the create operation will create shard-replica spread across all of your live Solr nodes. You can provide the
"createNodeSet" parameter to change the set of nodes to spread the shard-replica across. The format of values for this param is "<node-name1>,
<node-name2>,...,<node-nameN>" - e.g. "localhost:8983_solr,localhost:8984_solr,localhost:8985_solr"
collection.configName: The name of the config (must be already stored in zookeeper) to use for this new collection. If not provided the create
operation will default to the collection name as the config name.

 Solr4.2

About the params:

name: The name of the collection alias to be created.
collections: A comma-separated list of one or more collections to alias to.

Delete http://localhost:8983/solr/admin/collections?action=DELETE&name=mycollection

About the params:

name: The name of the collection to be deleted.

Reload http://localhost:8983/solr/admin/collections?action=RELOAD&name=mycollection

About the params:

name: The name of the collection to be reloaded.

Split Shard <collection_name>&shard=shardIdhttp://localhost:8983/solr/admin/collections?action=SPLITSHARD&collection=

 Solr4.3

About the params:

collection: The name of the collection
shard: The shard to be split

This command cannot be used by clusters with custom hashing because such clusters do not rely on a hash range. It should only be used by clusters
having "plain" or "compositeId" router.

The SPLITSHARD command will create two new shards by splitting the given shard's index into two pieces. The split is performed by dividing the shard's
range into two equal partitions and dividing up the documents in the parent shard according to the new sub-ranges. This is a synchronous operation. The
new shards will be named by appending _0 and _1 to the parent shard name e.g. if shard=shard1 is to be split, the new shards will be named as shard1_0
and shard1_1. Once the new shards are created, they are set active and the parent shard is set to inactive so that no new requests are routed to the
parent shard.

This feature allows for seamless splitting and requires no down-time. The parent shard is not removed and therefore no data is removed. It is up to the
user of the command to unload the shard using the new APIs in SOLR-4693 (under construction).

This feature was released with Solr 4.3 however due to bugs found after 4.3 release, it is recommended that you wait for release 4.3.1 before using this
feature.

Collection Aliases

Aliasing allows you to create a single 'virtual' collection name that can point to one more real collections. You can update the alias on the fly.

CreateAlias ,…http://localhost:8983/solr/admin/collections?action=CREATEALIAS&name=alias&collections=collection1,collection2

Creates or updates a given alias. Aliases that are used to send updates to should only map an alias to a single collection. Read aliases can map an alias
to a single collection or multiple collections.

DeleteAlias http://localhost:8983/solr/admin/collections?action=DELETEALIAS&name=alias

Removes an existing alias.

Creating cores via CoreAdmin

New Solr cores may also be created and associated with a collection via .CoreAdmin

Additional cloud related parameters for the CREATE action:

collection - the name of the collection this core belongs to. Default is the name of the core.
shard - the shard id this core represents (Optional - normally you want to be auto assigned a shard id)
numShards - the number of shards you want the collection to have - this is only respected on the first core created for the collection
collection.<param>=<value> - causes a property of <param>=<value> to be set if a new collection is being created.

Use collection.configName=<configname> to point to the config for a new collection.

Example:

curl 'http://localhost:8983/solr/admin/cores?action=CREATE&name=mycore&collection=collection1&shard=shard2'

https://cwiki.apache.org/confluence/display/SOLR/Solr4.2
http://localhost:8983/solr/admin/collections?action=DELETE&name=mycollection
http://localhost:8983/solr/admin/collections?action=RELOAD&name=mycollection
http://localhost:8983/solr/admin/collections?action=SPLITSHARD&collection=
https://cwiki.apache.org/confluence/display/SOLR/Solr4.3
http://localhost:8983/solr/admin/collections?action=CREATEALIAS&name=alias&collections=collection1,collection2
http://localhost:8983/solr/admin/collections?action=DELETEALIAS&name=alias
https://cwiki.apache.org/confluence/display/SOLR/CoreAdmin
https://cwiki.apache.org/confluence/display/SOLR/CoreAdmin

Distributed Requests

Query all shards of a collection (the collection is implicit in the URL):

http://localhost:8983/solr/collection1/select?

Query all shards of a compatible collection, explicitly specified:

http://localhost:8983/solr/collection1/select?collection=collection1_recent

Query all shards of multiple compatible collections, explicitly specified:

http://localhost:8983/solr/collection1/select?collection=collection1_NY,collection1_NJ,collection1_CT

Query specific shard ids of the (implicit) collection. In this example, the user has partitioned the index by date, creating a new shard every month:

http://localhost:8983/solr/collection1/select?shards=shard_200812,shard_200912,shard_201001

Explicitly specify the addresses of shards you want to query:

http://localhost:8983/solr/collection1/select?shards=localhost:8983/solr,localhost:7574/solr

Explicitly specify the addresses of shards you want to query, giving alternatives (delimited by) used for load balancing and fail-over:|

http://localhost:8983/solr/collection1/select?shards=localhost:8983/solr|localhost:8900/solr,localhost:7574
/solr|localhost:7500/solr

Required Config

All of the required config is already setup in the example configs shipped with Solr. The following is what you need to add if you are migrating old config
files, or what you should not remove if you are starting with new config files.

schema.xml

You must have a field defined:version

<field name="_version_" type="long" indexed="true" stored="true" multiValued="false"/>

solrconfig.xml

You must have an defined - this should be defined in the updateHandler section.UpdateLog

 <!-- Enables a transaction log, currently used for real-time get.

 "dir" - the target directory for transaction logs, defaults to the

 solr data directory. -->

 <updateLog>

 <str name="dir">${solr.data.dir:}</str>
 <!-- if you want to take control of the synchronization you may specify the syncLevel as one of the
 following where ''flush'' is the default. fsync will reduce throughput.
 <str name="syncLevel">flush|fsync|none</str>
 -->

#

 </updateLog>

You must have a replication handler called /replication defined:

 <requestHandler name="/replication" class="solr.ReplicationHandler" startup="lazy" />

You must have a realtime get handler called /get defined:

 <requestHandler name="/get" class="solr.RealTimeGetHandler">

 <lst name="defaults">

 <str name="omitHeader">true</str>

 </lst>

 </requestHandler>

You must have the admin handlers defined:

 <requestHandler name="/admin/" class="solr.admin.AdminHandlers" />

The is part of the default update chain and is automatically injected into any of your custom update chains. You can still DistributedUpdateProcessor
explicitly add it yourself as follows:

 <updateRequestProcessorChain name="sample">

 <processor class="solr.LogUpdateProcessorFactory" />

 <processor class="solr.DistributedUpdateProcessorFactory"/>

 <processor class="my.package.UpdateFactory"/>

 <processor class="solr.RunUpdateProcessorFactory" />

 </updateRequestProcessorChain>

If you do not want the auto injected into your chain (say you want to use functionality, but you want to DistributedUpdateProcessFactory SolrCloud
distribute updates yourself) then specify the following update processor factory in your chain: NoOpDistributingUpdateProcessorFactory

solr.xml

You must leave the admin path as the default:

 <cores adminPath="/admin/cores"

Re-sizing a Cluster

You can control cluster size by passing the numShards when you start up the first in a collection. This parameter is used to auto assign which SolrCore
shard each instance should be part of. Any that you start after starting numShards instances are evenly added to each shard as replicas (as SolrCores
long as they all belong to the same collection).

To add more to your collection, simply keep starting new up. You can do this at any time and the new will sync up its data SolrCores SolrCores SolrCore
with the current replicas in the shard before becoming active.

If you want to start your cluster on fewer machines and then expand over time beyond just adding replicas, you can choose to start by hosting multiple
shards per machine (using multiple) and then later migrate shards onto new machines by starting up a new replica for a given shard and SolrCores
eventually removing the shard from the original machine.

 The new "SPLITSHARD" collection API can be used to split an existing shard into two shards containing exactly half the range of the parent Solr4.3
shard each. More details can be found under the "Managing collections via the Collections API" section.

#
#
#
#
#
#
#
https://cwiki.apache.org/confluence/display/SOLR/Solr4.3

1.

Near Realtime Search

If you want to use the Near Realtime search support, you will probably want to enable auto soft commits in your solrconfig.xml file before putting it into
zookeeper. Otherwise you can send explicit soft commits to the cluster as you desire. See NearRealtimeSearch

Parameter Reference

Cluster Params

numShard
s

Defaults to
1

The number of shards to hash documents to. There will be one leader per shard and each leader can have N
replicas.

SolrCloud Instance Params

These are set in solr.xml, but by default they are setup in solr.xml to also work with system properties. Important note: the hostPort value found here will be
used (via zookeeper) to inform the rest of the cluster what port each Solr instance is using. The default port is 8983. The example solr.xml uses the jetty.
port system property, so if you want to use a port other than 8983, either you have to set this property when starting Solr, or you have to change solr.xml to
fit your particular installation. If you do not do this, the cluster will think all your Solr servers are using port 8983, which may not be what you want.

ho
st

Defaults to
the first local
host
address
found

If the wrong host address is found automatically, you can over ride the host address with this param.

ho
st
P
or
t

Defaults to
the jetty.port
system
property

The port that Solr is running on - by default this is found by looking at the jetty.port system property.

ho
st
C
on
te
xt

Defaults to
solr

The context path for the Solr webapp. (Note: in Solr 4.0, it was mandatory that the hostContext not contain "/" or "_" characters. Begining with Solr
4.1, this limitation was removed, and it is recomended that you specify the begining slash. When running in the example jetty configs, the
"hostContext" system property can be used to control both the servlet context used by jetty, and the hostContext used by – eg: SolrCloud -

)DhostContext=/solr

SolrCloud Instance ParamsZooKeeper

zkR
un

Defaults to
localhost:
<solrPort+10
01>

Causes Solr to run an embedded version of . Set to the address of on this node - this allows us to know who 'we are' in the ZooKeeper ZooKeeper
list of addresses in the connect string. Simply using gets you the default value. Note this must be one of the exact strings from zkHost -DzkRun z

; in particular, the default will not work for a multi-machine ensemble.kHost localhost

zkH
ost

No default The host address for - usually this should be a comma separated list of addresses to each node in your ensemble.ZooKeeper ZooKeeper

zkCli
entT
imeo
ut

Defaults to
15000

The time a client is allowed to not talk to before having it's session expired.ZooKeeper

zkRun and zkHost are setup using system properties. zkClientTimeout is setup in solr.xml, but default, can also be set using a system property.

SolrCloud Core Params

shar
d

The shard id. Defaults to being automatically assigned based on
numShards

Allows you to specify the id used to group into SolrCores
shards.

shard can be configured in solr.xml for each core element as an attribute.

Getting your Configuration Files into ZooKeeper

Config Startup Bootstrap Params

There are two different ways you can use system properties to upload your initial configuration files to the first time you start Solr. Remember ZooKeeper
that these are meant to be used only on first startup or when overwriting configuration files - everytime you start Solr with these system properties, any
current configuration files in may be overwritten when 'conf set' names match.ZooKeeper

Look at solr.xml and upload the conf for each found. The 'config set' name will be the collection name for that , and collections SolrCore SolrCore
will use the 'config set' that has a matching name.

https://cwiki.apache.org/confluence/display/SOLR/NearRealtimeSearch
#
#
#
#
#
#
#
#
#
#
#
#

bootstrap_
conf

No
default

If you pass -Dbootstrap_conf=true on startup, each you have configured will have it's configuration files automatically uploaded and SolrCore
linked to the collection that is part ofSolrCore

2. Upload the given directory as a 'conf set' with the given name. No linking of collection to 'config set' is done. However, if only one 'conf set' exists, a
collection will auto link to it.

bootstrap_co
nfdir

No default If you pass -bootstrap_confdir=<directory> on startup, that specific directory of configuration files will be uploaded to with a ZooKeeper
'conf set' name defined by the below system property, collection.configName

collection.
configName

Defaults to
configuration1

Determines the name of the conf set pointed to by bootstrap_confdir

Command Line Util

The ZkCLI tool (aka and) also lets you upload config to . It allows you to do it the same two ways that you can above. It zkcli.sh zkcli.bar ZooKeeper
also provides a few other commands that let you link collection sets to collections, make paths or clear them, as well as download configs from ZooKeeper

 to the local filesystem.ZooKeeper

Details on can be found in the Solr Ref Guide.using the ZkCLI command line tool and the options it supports

Examples

See: https://cwiki.apache.org/confluence/display/solr/Command+Line+Utilities#CommandLineUtilities-ZooKeeperCLIExamples

Scripts

See: https://cwiki.apache.org/confluence/display/solr/Command+Line+Utilities#CommandLineUtilities-Scripts

Zookeeper chroot

If you are already using Zookeeper for other applications and you want to keep the ZNodes organized by application, or if you want to have multiple
separated clusters sharing one Zookeeper ensemble you can use Zookeeper's "chroot" option. From Zookeeper's documentation: SolrCloud http://zookeep
er.apache.org/doc/r3.3.6/zookeeperProgrammers.html#ch_zkSessions

An optional "chroot" suffix may also be appended to the connection string. This will run the client commands
while interpreting all paths relative to this root (similar to the unix chroot command). If used the example
would look like: "127.0.0.1:4545/app/a" or "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002/app/a" where the
client would be rooted at "/app/a" and all paths would be relative to this root - ie getting/setting/etc... "
/foo/bar" would result in operations being run on "/app/a/foo/bar" (from the server perspective).

To use this Zookeeper feature, simply start Solr with the "chroot" suffix in the zkHost parameter. For example:

java -DzkHost=localhost:9983/foo/bar -jar start.jar

or

java -DzkHost=zoo1:9983,zoo2:9983,zoo3:9983/foo/bar -jar start.jar

NOTE: With Solr 4.0 you'll need to create the initial path in Zoookeeper before starting Solr. Since Solr 4.1, the initial path will automatically be created if
you are using either or .bootstrap_conf boostrap_confdir

Known Limitations

A small number of Solr search components do not support . In some cases, a component may never get distributed support, in other DistributedSearch
cases it may just be a matter of time and effort. All of the search components that do not yet support standard distributed search have the same limitation

. You can pass distrib=false to use these components on a single .with SolrCloud SolrCore

The Grouping feature only works if groups are in the same shard. You must use the custom sharding feature to use the Grouping feature.

If upgrading an existing Solr instance instance running with from Solr 4.0 to 4.1, be aware that the way the name_node parameter is defined has SolrCloud
changed. This may cause a situation where the name_node uses the IP address of the machine instead of the server name, and thus is not SolrCloud
aware of the existing node. If this happens, you can manually edit the host parameter in solr.xml to refer to the server name, or set the host in your system
environment variables (since by default solr.xml is configured to inherit the host name from the environment variables). See also the section Core Admin
and Configuring solr.xml for more information about the host parameter.

Glossary

A single search index.

#
#
#
#
#
#
https://cwiki.apache.org/confluence/display/solr/Command+Line+Utilities
https://cwiki.apache.org/confluence/display/solr/Command+Line+Utilities#CommandLineUtilities-ZooKeeperCLIExamples
https://cwiki.apache.org/confluence/display/solr/Command+Line+Utilities#CommandLineUtilities-Scripts
http://zookeeper.apache.org/doc/r3.3.6/zookeeperProgrammers.html#ch_zkSessions
http://zookeeper.apache.org/doc/r3.3.6/zookeeperProgrammers.html#ch_zkSessions
https://cwiki.apache.org/confluence/display/SOLR/DistributedSearch
https://cwiki.apache.org/confluence/display/SOLR/DistributedSearch#DistributedSearch-Distributed_Searching_Limitations
https://cwiki.apache.org/confluence/display/SOLR/DistributedSearch#DistributedSearch-Distributed_Searching_Limitations
#

Collection
:

Shard: A logical section of a single collection (also called Slice). Sometimes people will talk about "Shard" in a physical sense (a manifestation of a logical
shard)

Replica: A physical manifestation of a logical Shard, implemented as a single Lucene index on a SolrCore

Leader: One Replica of every Shard will be designated as a Leader to coordinate indexing for that Shard

SolrCore: Encapsulates a single physical index. One or more make up logical shards (or slices) which make up a collection.

Node: A single instance of Solr. A single Solr instance can have multiple that can be part of any number of collections.SolrCores

Cluster: All of the nodes you are using to host .SolrCores

FAQ

Q: I'm seeing lot's of session timeout exceptions - what to do?
A: Try raising the session timeout by editing solr.xml - see the zkClientTimeout attribute. The minimum session timeout is 2 ZooKeeper
times your defined tickTime. The maximum is 20 times the tickTime. The default tickTime is 2 seconds. You should avoiding ZooKeeper
raising this for no good reason, but it should be high enough that you don't see a lot of false session timeouts due to load, network lag, or
garbage collection pauses. The default timeout is 15 seconds, but some environments might need to go as high as 30-60 seconds.

Q: How do I use , but distribute updates myself?SolrCloud
A: Add the following somewhere in your update chain: UpdateProcessorFactory NoOpDistributingUpdateProcessorFactory

Q: What is the difference between a Collection and a ?SolrCore
A: In classic single node Solr, a is basically equivalent to a Collection. It presents one logical index. In , the 'sSolrCore SolrCloud SolrCore
on multiple nodes form a Collection. This is still just one logical index, but multiple host different 'shards' of the full collection. SolrCores
So a encapsulates a single physical index on an instance. A Collection is a combination of all of the that together SolrCore SolrCores
provide a logical index that is distributed across many nodes.

Q: Does provide the ability to dynamically add shards to a Collection ?SolrCloud
A: supports the ability to add New Shards (or DELETE existing shards) to your index (whenever you want) via the "implicit SolrCloud
router" configuration in the CREATECOLLECTION API.

Lets say - you have to index all "Audit Trail" data of your application into Solr. New Data gets added every day. You might most probably want to shard by
year.

You could do something like the below during the initial setup of your collection:

admin/collections?
action=CREATE&
name=AuditTrailIndex&
router.name=implicit&
shards=2010,2011,2012,2013,2014&
router.field=year

The above command:
a) Creates 5 shards - one each for the current and the last 4 years 2010,2011,2012,2013,2014

b) Routes data to the correct shard based on the value of the "year" field (specified as router.field)

In December 2014, you might add a new shard in preparation for 2015 using the CREATESHARD API (part of the Collections API) - Do something like:

/admin/collections?
action=CREATESHARD&
shard=2015&
collection=AuditTrailIndex

The above command creates a new shard on the same collection.

When its 2015, all data will get automatically indexed into the "2015" shard assuming your data has the "year" field populated correctly to 2015.

In 2015, if you think you don't need the 2010 shard (based on your data retention requirements) - you could always use the DELETESHARD API to do so:

/admin/collections?
action=DELETESHARD&
shard=2015&
collection=AuditTrailIndex

This solution only works if you used the "implicit router" when creating your collection. Does NOT work when you use the default "compositeId router" - i.e.
collections created with the numshards parameter.

#
#
#
#
#
#
#
#
#
#
#
#

	SolrCloud

