
SolPHP
Solr PHP support

Solr PHP support
solr-php-client
Apache Solr PHP Extension
Solarium
Solr's PHP response format
Solr's PHP Serialized response format
Historical

solr-php-client

A 3rd party PHP library for indexing and searching documents within an Apache Solr installation.

Zip / Tarballs can be found at SolrPhpClient

Adding, Deleting (by id and query), committing, optimizing and of course searching against a Solr instance
Written for PHP 5 in Zend Framework / PEAR coding style
PHPDoc generated API documentation included
See link above for example usage and further documentation

Apache Solr PHP Extension

The Apache Solr PECL extension is a light-weight, feature-rich library that allows developers using Apache Solr via PHP to communicate easily and
efficiently with the Solr web service using an object-oriented API.

The documentation for the PECL extension contains instructions on how to install the extension and is available in the under Search Engine PHP Manual
Extensions.

There are 2 parallel releases of the extension:

PECL Apache Solr Extension 1.x which supports Apache Solr Server 3.x
PECL Apache Solr Extension 2.x which supports Apache Solr Server 4.0+

The php extension can be downloaded from the home page. Windows binaries can also be found on the extension's page.Apache Solr PECL project

A quick list of some of the features of the API include :

Built in support for adding, deleting, optimizing, searching, rollback.
Ability to connect to Solr servers behind SSL-enabled containers.
Users can optionally provide PEM-formatted private keys or certificates to connect in HTTPS mode.
Users can optionally provide CA certificates to authenticate hostname and issuer of SSL certificate.
Developers can now update the values of the servlets (such as search, update) after the instance has been created.SolrClient
Built in, Serializable query string builder objects which effectively simplifies the manipulation of name-value pair request parameters across
repeated requests.
The query builder API has methods to add/set, remove or retrieve name-value pair values for the following features in Solr : SimpleFacetParamete

, , , , etc.rs StatsComponent MoreLikeThis HighlightingParameters TermsComponent
Ability to reuse of HTTP connections across repeated requests (within the same thread in ZTS mode or same process in non-ZTS mode).
Advanced HTTP client that provides built-in support for connecting to Solr servers secured behind HTTP Authentication or HTTP proxy servers.
Ability to obtain objects from in query response for possible resubmission or updates.SolrInputDocument SolrDocument
Automatic parsing of Solr response into native php objects whose properties can be accessed as array keys or object properties without any
additional configuration on the client-side. This is simplified interface to access server response data. Solr Objects can be treated as arrays or
objects.
Also the retrieved from the query response implements the following interfaces which gives the developer several options on how SolrDocument
to manipulate the response : , Iterator, Traversable, Serializable. ArrayAccess

The extension currently uses version 2.2 of the xml response format internally.

The contents of the XML response is transformed into native PHP types and the result is returned as a Solr Object instance.

You may also install it by running the following command in the console :

$ pecl install solr

Solarium

Solarium is a Solr client library for PHP applications that not only facilitates Solr communication but also tries to accurately model Solr concepts.

Solr's PHP response format

http://code.google.com/p/solr-php-client/downloads/list
http://docs.php.net/manual/en/book.solr.php
http://pecl.php.net/package/solr
#
#
#
https://cwiki.apache.org/confluence/display/SOLR/StatsComponent
https://cwiki.apache.org/confluence/display/SOLR/MoreLikeThis
https://cwiki.apache.org/confluence/display/SOLR/HighlightingParameters
https://cwiki.apache.org/confluence/display/SOLR/TermsComponent
#
#
#
#
http://solarium.readthedocs.io/en/latest/

Solr has a PHP response format that outputs an array (as PHP code) which can be eval'd.

Example usage:

$code = file_get_contents('http://localhost:8983/solr/select?q=iPod&wt=php');
eval("\$result = " . $code . ";");
print_r($result);

Solr's PHP Serialized response format

Solr has a PHP response format that outputs a serialized array.

Example usage:

$serializedResult = file_get_contents('http://localhost:8983/solr/select?q=iPod&wt=phps');
$result = unserialize($serializedResult);
print_r($result);

In order to use either PHP or Serialized PHP Response Writers, you may first need to uncomment these two lines in your solrconfig.xml:

<queryResponseWriter name="php" class="org.apache.solr.request.PHPResponseWriter"/>
<queryResponseWriter name="phps" class="org.apache.solr.request.PHPSerializedResponseWriter"/>

You can also use the new response writer plugin for PHP here

https://issues.apache.org/jira/browse/SOLR-1967

<code>
<queryResponseWriter name="phpnative" class="org.apache.solr.request.PHPNativeResponseWriter">
<!-- You can choose a different class for your objects. Just make sure the class is available in the client -->
<str name="objectClassName">SolrObject</str>
<!--
0 means OBJECT_PROPERTIES_STORAGE_MODE_INDEPENDENT
1 means OBJECT_PROPERTIES_STORAGE_MODE_COMBINED

In independed mode, each property is a separate property
In combined mode, all the properites are merged into a _properties array.
The combined mode allows you to create custom __getters and you could also implement ArrayAccess, Iterator and
Traversable
-->
<int name="objectPropertiesStorageMode">0</int>
</queryResponseWriter

<code>

Also check out how to use it on the client side here

http://www.php.net/manual/en/solrclient.setresponsewriter.php

http://www.php.net/manual/en/solrclient.construct.php

CategoryQueryResponseWriter

Historical

Original Client Code Contributed By Brian Lucas:* *
_*
There are two classes for PHP: and . *_SolrUpdate SolrQuery
_*

 :TODO: *_
_*

clean up some of the XML writing code – it's a tad "kludgy" right now. *_
_*

https://issues.apache.org/jira/browse/SOLR-1967
http://www.php.net/manual/en/solrclient.setresponsewriter.php
http://www.php.net/manual/en/solrclient.construct.php
https://cwiki.apache.org/confluence/display/SOLR/CategoryQueryResponseWriter
https://issues.apache.org/jira/browse/SOLR-50
https://issues.apache.org/jira/browse/SOLR-51

abstract out more of the logic into configurable variables *_
_*
add back in the logging and debugging classes that clean up the "echo" calls*_

	SolPHP

