
SolPython
Python Solr clients
This is a part of the . As with the main list, the latest source update is listed - where possibly - as a proxy for level of relevance.Solr Clients list

Python Solr clients
SolrClient
solrcloudpy
solrpy
pysolr
sunburnt
Others
Using Solr's Python output
Using normal JSON

SolrClient

SolrClient An actively-developed client based on Python 3 and targeting Solr 5.

Last update: November 2015

solrcloudpy

solrcloudpy is a library designed specifically for interacting with . It also comes with an interactive console.SolrCloud

Last update: April 2015

solrpy

solrpy is available at The Python Package Index so you should be able to:

easy_install solrpy

Or you can check out the source code and:

python setup.py install

Last update: April 2015

pysolr

pysolr - lightweight python wrapper for Solr.

Last update: October 2015

sunburnt

Sunburnt is a Solr library, both for inserting and querying documents. Its development has aimed particularly at making the Solr API accessible in a
Pythonic style.

Last Release: version 0.6 in Jan 2012. Last code update November 2015 (has lots of forks though by other groups)

Others

Scorched - a fork of sunburnt - June 2014
PySolarized () - May 2014Docs
Solar () - July 2014Russian docs
Pysolr4 - June 2013
mysolr - Last updated sometime in 2012
Solr command line client - October 2012
txSolr is a Twisted-based asynchronous library - October 2011
Django-Solr ORM - August 2012

https://cwiki.apache.org/confluence/display/SOLR/IntegratingSolr
#
https://github.com/moonlitesolutions/SolrClient
https://pypi.python.org/pypi/solrcloudpy/
https://cwiki.apache.org/confluence/display/SOLR/SolrCloud
http://pypi.python.org/pypi/solrpy/
http://pypi.python.org/pypi/pysolr/
http://pypi.python.org/pypi/sunburnt
https://github.com/lugensa/scorched
https://github.com/izacus/pysolarized
https://www.virag.si/2014/04/project-spotlight-pysolarized/
https://github.com/anti-social/solar
http://solar.readthedocs.org/en/latest/
https://github.com/zeraholladay/pysolr4/
http://mysolr.redtuna.org/en/latest/
https://github.com/moliware/solr_cli
https://launchpad.net/txsolr
https://github.com/sophilabs/django-solr

Using Solr's Python output

Solr has an optional Python response format that extends its in the following ways to allow the response to be safely eval'd by Python's JSON output
interpreter:

true and false changed to True and False
Python unicode strings used where needed
ASCII output (with unicode escapes) for less error-prone interoperability
newlines escaped
null changed to None

Here is a simple example of how one may query Solr using the Python response format:

from urllib2 import *
conn = urlopen('http://localhost:8983/solr/collection/select?q=iPod&wt=python')
rsp = eval(conn.read())

print "number of matches=", rsp['response']['numFound']

#print out the name field for each returned document
for doc in rsp['response']['docs']:
 print 'name field =', doc['name']

With Python 2.6 you can use the literal_eval function instead of eval. This only evaluates "safe" syntax for the built-in data types and not any executable
code:

import ast
rsp = ast.literal_eval(conn.read())

Using normal JSON

Using is generally considered bad form and dangerous in Python. In theory if you trust the remote server it is okay, but if something goes wrong it eval
means someone can run arbitrary code on your server (attacking eval is very easy).

It would be better to use a Python JSON library like . It would look like:simplejson

from urllib2 import *
import simplejson
conn = urlopen('http://localhost:8983/solr/collection/select?q=iPod&wt=json')
rsp = simplejson.load(conn)
...

Safer, and as you can see, easy.

https://cwiki.apache.org/confluence/display/SOLR/SolJSON
http://undefined.org/python/#simplejson

	SolPython

