SolrSnmp
SNMP Monitoring of Solr Statistics (through JBoss)

® SNMP Monitoring of Solr Statistics (through JBoss)
® Setup

© Private Enterprise Number (OID)

© Configuring the exposed attributes
Creating the MBean
Initializing and Registering the MBean
Testing the exposed SNMP attributes
Troubleshooting

There are likely several ways of doing this, including finding some libraries (open source or otherwise) that expose MBean attributes through SNMP.
However, one of the easiest methods is to use the snmp-adapter.sar that comes with JBoss 4.0.5.GA and above. This page shows how to add an SNMP-
adapter that exposes one attribute, the "standard" QueryHandler's request count.

Setup

The snmp-adapter.sar can be found in the server/all/deploy directory. You'll want to copy it into your server instance's deploy directory.

Private Enterprise Number (OID)

In order to use SNMP monitoring, you will need to have your own Private Enterprise Number (OID). You can apply for one at IANA's website, and if it's
approved it will show up in the IANA's master list.

Configuring the exposed attributes

Using your OID (let's say it's 12345678 for XYZ Corp.), you'll want to edit the attributes.xml included in the snmp-adapter.sar to add something like the
following:

<nbean name="com xyz: name=Sol r Stats" oid-prefix=".1.3.6.1.4.1.12345678. 1">

<attribute nanme="CQueryHandl er _St andard_Requests" oid=".1"/>
</ mbean>

Creating the MBean

You'll want to create an MBean interface that looks something like this:

public interface SolrStatsMBean {
public | ong getQueryHandl er _St andard_Requests();

}

And for the implementation, | have chosen to make most of the accessor methods static because in my implementation other pieces of code access the
stats as well. The implementation looks like this:

#
http://pen.iana.org/pen/PenApplication.page
http://www.iana.org/assignments/enterprise-numbers

public class SolrStats inplements SolrStatsMBean {
protected static CoreContainer coreContainer;
protected static final String DEFAULT_CORE_NAME = "";

public static void initialize(CoreContainer container) {
coreCont ai ner = contai ner;

}

public | ong getQueryHandl er _St andar d_Requests() {
return SolrStats. get Sol rl nf oMBeanVal ue(Sol r I nf oMBean. Cat egor y. QJERYHANDLER, "standard", "requests");

}

private static String getSol rlnfoMBeanVal ue(Sol rl nf oMBean. Cat egory category, String entryNane, String
st at Nane) {
Map<String, SolrlnfoMBean> registry = coreContai ner. get Cor e(DEFAULT_CORE_NAME) . get | nf oRegi stry();
for (Map. Entry<String, SolrlnfoMBean> entry : registry.entrySet()) {
String key = entry. getKey();
Sol rI nfoMBean sol rl nfoMBean = entry. get Val ue();
if ((solrlnfoMBean.getCategory() != category) ||
('entryNare. equal s(key.trim()))) {
conti nue;
}
NanmedLi st <?> nl = solrlnfoMBean. getStatistics();
if ((nl '=null) & (nl.size() > 0)) {
for (int i =0; i <nl.size(); i++) {
if (nl.getNanme(i).equal s(statNane)) {
return nl.getVal (i).toString();
}
}
}
}

return null;

}

public static String getSolrlnfoMBeanVal ueString(SolrlnfoMBean. Category category, String entryNanme, String
stat Nane) {
String s = get Sol rl nfoMBeanVal ue(cat egory, entryNanme, statNane);
return (s == null) ? "" : s;

}

public static |ong getSolrlnfoMBeanVal ueLong(Sol rl| nfoMBean. Cat egory category, String entryNane, String
st at Nane) {
String num = get Sol rI nf oMBeanVal ue(cat egory, entryNane, statNane);

try {
return (num!= null) ? Long.parseLong(num : -1L;
}
catch (Nunber For mat Exception e) {
return -2L;
}

}
}

Note that I've stripped out the imports and a bunch of exception-handling code in order to keep this code section as brief as possible, and names have
been changed to protect the innocent. You'll want to handle potential null returns, etc.

Initializing and Registering the MBean

Solr uses a filter to direct its traffic (SolrDispatchFilter), and inside that filter is a member variable that contains the Solr cores (of type org.apache.solr.core.
CoreContainer). Because that member variable is not exposed in any way, you'll have to extend the filter in order to get to the CoreContainer. You should
end up with code that looks like this:

#

public class Sol rWthSNWPDi spatchFilter extends Sol rDi spatchFilter {
private List<ObjectNane> nbeanNanes = new Arrayli st <Cbj ect Name>();

@verride

public void init(FilterConfig config) throws ServletException {
super.init(config);
SolrStats.initialize(super.cores);
regi st er MBean("com xyz: name=Sol r Stats", new SolrStats());

}

@verride

public void destroy() {
der egi st er MBeans() ;
super . destroy();

}

private void regi sterMBean(String objectName, bject bean) throws ServletException {
MBeanServer nbs = MBeanServerLocator. | ocateJBoss();
try {
Obj ect Name on = new (bj ect Nane(obj ect Nane) ;
nbs. regi st er MBean(bean, on);
nmbeanNanes. add(on);
}
catch (Not Conpl i ant MBeanException e) { throw new Servl et Exception(e); }
catch (MBeanRegi strationException e) { throw new Servl et Exception(e); }
catch (I nstanceAl readyExi st sException e) { throw new Servl et Exception(e); }
catch (Mal formedCbj ect NameException e) { throw new Servl et Exception(e); }
}

private void deregisterMeans() {
try {
MBeanServer nbs = MBeanServerLocator. | ocateJBoss();
for (ObjectName on : nbeanNames) {
nmbs. unr egi st er MBean(on) ;
}
}
catch (MBeanRegi strati onException e) { e.printStackTrace(); }
catch (1 nstanceNot FoundException e) { e.printStackTrace(); }
}
}

Again, you may not want to do your error-handling that way, but you get the picture. You'll note where we use the JNDI name the same way we specified it
in attributes.xml.

In order to make sure the filter is used, you must deploy your classes (MBean classes and filter) along with Solr. For now we'll assume you've done that by
placing them inside the solr.war.

You must also edit the web.xml in the solr.war file to change the SolrRequestFilter to use your extended filter:
<filter>
<filter-name>Sol rRequestFilter</filter-nane>

<filter-class>omxyz.web.filter.SolrWthSNWDi spatchFilter</filter-class>
</filter>

Testing the exposed SNMP attributes

Once that's done, simply deploy your new war file into JBoss and start it up. A good way to test SNMP locally is by using NET-SNMP. With that installed,
you can run commands like this:

./snmpwal k. exe -v 1 -c public 127.0.0.1:1161 .1.3.6.1.4.1.12345678.1

Note the use of the Private Enterprise Number in the OID! A command like that (or a specific value using "snmpget") should yield results like this if
everything's working:

#
http://www.net-snmp.org/

SNMPv2-SM : :enterprises. 12345678. 1. 1 = Gauge32: 4

Troubleshooting

One problem I've noticed with the SNMP adapter SAR is that although it seems to be able to figure out how to expose "String" and "long" types properly, it
does not expose "double” types properly (and it gives no errors about them either, which is troublesome). That means that attributes such as the standard
query-handler's avgTimePerRequest statistic should probably be exposed as Strings. Of course, if you can get the double values working, please feel free

to edit this wiki and enlighten us all.

Another thing I've noticed is that when an SNMP attribute cannot be exposed, the NET-SNMP snmpwalk will quit walking upon the first variable that gives
it cannot retrieve, however the following attributes may still be exposed properly.

	SolrSnmp

