
1.  
2.  
3.  
4.  

BristolHadoopWorkshop
Bristol Hadoop Workshop, University of Bristol, August 10, 2009
This was a little local workshop put together by Simon Metson of Bristol University, and Steve Loughran of HP, to get some of the local Hadoop users in a 
room and talk about our ongoing work.

Acknowledgements

Bristol Centre for Nanoscience and Quantum Information  for the room and other facilitiesNSQI
University of Bristol Particle Physics group for hosting the workshop
HP Laboratories for the food and coffee
Cloudera for supplying beer at the Highbury Vaults. 

Presentation

These presentations were intended to start discussion and thought

Hadoop Futures (Tom White, Cloudera)
Hadoop and High-Energy Physics (Simon Metson, Bristol University)
HDFS (Johan Oskarsson, Last.fm)
Graphs Paolo Castagna, HP
Long Haul Hadoop (Steve Loughran, HP) 

Hadoop Futures

Hadoop Futures (Tom White, Cloudera) 

Tom's goals for Hadoop

make it modular
support more languages than just Java
better integration with management tools 

Schedulers

CapacityScheduler. Yahoo!'s -designed for very large clusters with different people working on it. Can take RAM requirements into account and place work 
machines with free RAM space, rather than just a free "slot"

FairScheduler -Facebook's. For a datacentre running production work with latency requirements, some people also running Hive jobs which are lower 
priority.

Languages

streaming: stdin and stdout, text or typed binaries; slow
pipes: C++ interface
HDFS is pure Java. FUSE is slow because of this 

Security

This is going to take lots of work. Its really hard to get security right.

Scaling Down

standalone doesn't have >1 reducer.
MiniMR will run multicore, but you have the overhead of the full RPC protocol, even though everything is running in a single process.
Ideal: a multicore-ready single client. 

Someone needs to make the local job runner better. It's been neglected because all big projects don't use it. To make Hadoop useful for small amounts of 
data, single machine work, the standalone runner needs work.

Pig in local mode doesnt use local job runner => need to take what they've done.

Project split

New list structure

${project}-dev: every issue when created, other discussion
${project}-issues: every JIRA update
${project}-user: user discussions. This is a bit confused now, there are so many of these.

http://www.bristol.ac.uk/nsqi-centre/
http://www.slideshare.net/steve_l/hadoop-futures
http://www.slideshare.net/steve_l/hadoop-hep
http://www.slideshare.net/steve_l/hdfs
http://www.slideshare.net/steve_l/graphs-1848617
http://www.slideshare.net/steve_l/long-haul-hadoop
http://www.slideshare.net/steve_l/hadoop-futures
#
#


hadoop-general - worth getting on this list too 

0.21 release

Any 0.21 features must go in in this month!
MAPREDUCE-207 Computing splits on the cluster: reduces effort on the client
HADOOP-6165 Avro and Thrift
Context Objects - new API, finished for 0.21
new shuffle : read the Y! paper on sortbenchmark.org 

Hadoop 1.0 goals

The goal for 1.0 is to have some things stable for a year: API, wire format (Avro). Some things will be marked "unstable, developer only" to avoid 
guaranteeing fixing things.

HADOOP-5073 -interface classification
HADOOP-5071 -wire protocol 

Paolo wants a hadoop-client POM that pulls in only the dependencies for the client. Similarly, a hadoop-local that only pulls in stuff for local things.

Eclipse Plugin

The Eclipse plugin is not in sync with eclipse. Nobody is supporting/using it right now. With a stable API/wire format it would work better. (of course, with a 
stable long-haul API, the plugin could always work with a remote cluster, even if you had to be careful that the jobs you ran were compiled against a 
compatible version.)

Benchmarking Hadoop

Benchmarking Hadoop (Steve Loughran & Julio Guijarro, HP) 

Terasort, while a good way of regression testing performance across Hadoop versions, isn't ideal for assessing which hardware is best for other algorithms 
than sort, because things that are more iterative and CPU/memory hungry may not behave as expected on a cluster which has good IO, but not enough 
RAM for their algorithm.

In the discussion, though, it became clear that a common need people have that isn't that well address right now and for which terasort is the best that 
 is QA-ing a new cluster.people have to date

Here you have new hardware  on a new network  and any of which failing is an immediate replacement call to the vendor which may not be configured right
with a new set of configuration parameters -all of which may be wrong or at least suboptimal. You need something to run on the cluster which tests every 
node, makes sure it can see every other node's services, and report problems in meaningful summaries. The work should test CPU, FPU and RAM too, 
just to make sure they are all valid, and at the end of the run, generate some test numbers that can be compared to a spreadsheet-calculated estimate of 
performance and throughput.

When you bring up a cluster, even if every service has been asked to see if it is healthy, they still have the problem of talking to everything. The best 
check: push work through the system. Wait for things to fail, try and guess the problem. Having work to push through that is designed to stress the 
system's interconnected  would be nice.and whose failure can be diagnosed with ease

That is, for all those people asking for a HappyHadoop JSP page, it isn't enough. A cluster may cope with some of the workers going down, but it is not 
actually functional unless every node that is up can talk to every other node that is up, that nothing is coming up listening on IPv6, that the  TaskTracker
hasn't decided to only run on localhost, etc. etc.

Long-Haul Hadoop

Long Haul Hadoop (Steve Loughran, HP) 

This talk discussed the notion of a long-haul interface to Hadoop.

This is a recurrent theme in various bug reports -anywhere where people want to submit jobs from a distance and keep an eye on them. Often this need 
surfaces in a request for some kind of remote API to the Job Tracker.

This talk discussed the fact that remote Job Tracker API is not sufficient. Being able to submit one job is nice, but if you are chaining things together, you 
need to submit a sequence of operations, and the logic to chain it together. You may also want things like notifications of progress/failure. What you have 
is a workflow.

Workflows could be handled at the low level with something that can run a sequence of MR jobs, and any Java classes which implement the Tool 
interface. The Tool would be run in the datacentre, in some medium-availability host, so you could switch your laptop off and know that the program was 
still running.

There is work underway at Yahoo! with Oozie, a workflow system for Hadoop; Cascading and Pig Latin are also languages to describe sequences of 
operations, so again, you need to run them. In the talk,  was used as a constraint-language for ordering work, which shows that the language SmartFrog
set is even broader. But there is a key point here: the model of a workflow engine is the same, regardless of the language. You create workflows, you 
schedule them with parameters and options, you await results.

The long-haul model for workflow can be the same for multiple back ends.

http://www.slideshare.net/steve_l/benchmarking-1840029
#
https://cwiki.apache.org/confluence/display/HADOOP2/TaskTracker
http://www.slideshare.net/steve_l/long-haul-hadoop
#


1.  
2.  

The talk looked at the options for long-haul-ness, of which there are two

WS-* : the big, comfortable, safe long-haul option, the Airbus A380. You, the passenger, get looked after by the cabin crew. 
The floatplane. Agile, can get around fast, but you read the location of the life vest instructions very carefully, make a note of the exit in the roof 
and hope that you aren't the one who has to get on the float to dock the plane with the boat. It isn't quite as comfy as the big plane, but it is easier 
to get up and around with it. 

Two RESTful world views were discussed

A pure REST: PUT/DELETE model of workflow objects, in which even their queue state is manipulated using the full REST model. This is clean, 
ideal for clients such as Restlet, and HTML5 browsers.
An HTTP Post model, in which work is POSTed to a queue server, URLs returned; operations to the queued workflows via POST or PUT, GET 
for state updates. 

Steve gave a partial demonstration of Mombasa, his prototype "long-haul route to the elephants". This consists of:

A RESTy interface built from JAX-RS, hosted as the Jersey runtime under Jetty, deployed in-datacentre by  SmartFrog
A Portlet GUI to the same set of operations, this time running in-datacentre in a portlet server. (Which may be liferay-on-tomcat, but does not 
need to be). It is implicitly implementing the HTTP Post model. 

Currently the portlet is not using the long-haul API itself, though there is no reason why it should not, in which case it will not only drive the API, it will test it.

Other Portlets will apparently provide cluster management by talking to the relevant "cloud" APIs: Add/decommission nodes, view logs, etc, and simple 
HDFS file access.

Long-haul filesystem access is another issue. Ideally, WebDAV would be good, as there are so many clients and it is a pure REST API. But parts of the 
WebDAV spec are odd (same FS semantics as Win98/FAT), and you can be sure of interop grief. Amazon S3 is simpler, as long as you avoid their daft 
authentication mechanism.

Discussion: Simon mentioned that they had a REST API to some of the CERN job submission services, and later sent out . There was general a link
agreement that you need to push out more than just MR jobs

Hadoop and High-Energy Physics

Hadoop and High-Energy Physics (Simon Metson, Bristol University) 

The CMS experiment is on the Large Hadron Collider; it will run for 20-30 years colliding heavy ions, such as lead ions. Every collision is an event; 1MB of 
data. Over a year, you are looking at 10+PB of data. Right now, as the LHC isn't live, everything is simulation data, which helps debug the dataflow and 
the code, but reduces the stress. Most events are unexciting, you may need to run through a few hundred million events to find a handful that are relevant.

Jobs get sent to specific cluster round the world where the data exists. It is the "move work to data" across datacentres, but once in place, there isn't so 
much locality. The Grid protocols are used to place work, but a lot of the underlying grid stuff isn't appropriate; written with a vision that doesn't match the 
needs. Specifically, while the schedulers are great at work placement on specific machine types, meeting hardware and software requirements (Hadoop 
doesn't do any of that), you can't ask for time on the MPI-enabled bit of the infrastructure, as the grid placement treats every machine as standalone; 
doesn't care about interconnectivity.

New concept: "dark data" - data kept on somebody's laptop. This makes up the secret heavy weight of the data sets. When you think that its laptop data 
that is the enemy of corporate security and AV teams, its apt everyone. In CMS, people like to have their own sample data on their site, they are 
possessive about it. This is probably because the LHC isn't running, and the data rate isn't overloading everyone. When the beam goes live, you will be 
grateful for storage and processing anywhere.

A lot of the physicists who worked on the LEP predecessor are used to storing everything on a hard disk. The data rates render this viewpoint obsolete.

In the LHC-era clusters, there is a big problem of disk, tape, CPU balance. For example, multicore doesn't help as the memory footprint is such that 
multicore doesn't benefit that much unless you have 32/64 GB. It also means that job setup/teardown costs are steep. You don't want to work an event at a 
time, you want to run through a few thousand. The events end up being stored in 2GB files for this reason.

The code is all FORTRAN coded in C++.

This was a really interesting talk that simon should give at apachecon. Physicists may be used to discussing the event rate of a high-flux-density hadron 
beam, but for the rest of us, it makes a change from web server logs.

Data flow

LHC -> Tier 0, in Geneva
Tier 0 records everything to tape, pushes it out to the tier 1 sites round the world. In the UK, Rutherford Appleton Labs is the tier 1 site.
Tier 1 do some computation as well as storage -you can "skim" the data on on tier one, quick reject of dull stuff -and can share the results. This is 
effectively a reduce.
Tier 2 sites do most of the computation; they have their own storage and are scattered round the world in various institutions. In the US, the 
designs are fairly homogeneous, in EU, less so.

The architecture of the LHC pipeline is done more for national/organisation politics than for efficient processing. The physicists don't get billed for network 
traffic.

Staff issues: lots of spare time cluster managers. People are the SPOFs of the CERN tooling. In the long term, they may consolidate onto one or two UK 
sites.

#
https://twiki.cern.ch/twiki/bin/view/CMS/DMWTTutorialDatabaseREST#REST_classes_in_Webtools
http://www.slideshare.net/steve_l/hadoop-hep


File Systems

Castor: CERN, includes tapes, team turnover/staffing bad
Dcache: fermilab. works there
DPM: doesn't scale beyond 10TB of RAID.
GPFS -Bristol. Taking a while to work as promised. 

Hadoop Integration

HDFS has proven v. successful at Tier-2 sites; popularity may increase as centres expand. Appreciated features: checksumming, admin tools. Validate 
that the data is OK.

Could you run CMSSW under Hadoop? Probably not. Very slow startup/teardown cost, so you don't want to just run it for one/two events.

Issue: How to convince physicists to embrace MR? Need to see the benefits, as physicists don't see/care about the the costs.

Graphs

Graphs Paolo Castagna, HP 

This was a talk by Paolo Castagna on graph work under MR, of which  is classic applicationPageRank

graph topology does not change every iteration, so why ship it around every MR?
the graph defines the other jobs you need to communicate with.

The graph is a massive data structure which, if you are doing inference work, only grows in relationships. Steve thinks: You may need some graph model 
which is shared across servers, which they can all add to. There is a small problem here: keeping the information current for 4000 servers, but what if you 
don't have to, what if you treat updates to the graph as lazy facts to propagate round?

Google: pregel. what do you need from a language to describe  in 15 lines?PageRank

MS: dryad does not do graphs.

Projects

Apache Hamburg -proposed by Edward Yoon, of Hamas, is it making progress? We need code.
Thread based prototype code of Hamburg
Apache Common Graph. Dead, pre-MapReduce code. 

Graph Algorithms

These are what a graph project should start with

Graph Search
Directed/acyclic graphs
Minimum Spanning Tree
Shortest Path
Network Flow 

Paolo claimed that Depth First Search, DFS, doesn't work in this space. if Depth First Search doesn't work, what to do?

The current best printed work on Graph over  is the recent paper , by Jonathan Cohen.MapReduce Graph Twiddling in a MapReduce World

You can't do transitive closure in SQL.
What would an efficient transitive closure algorithm over MR be? 

Discussion

There was discussion on handing big graphs in the system, ones where the graph itself is very large. Someone need's to take Paolo's -over-PageRank
MapReduce code and test it on bigger data sets.

There was a good point on what is "efficient" in this world.

Yes, something done as a chain of MR jobs on a Hadoop cluster may seem an inefficient approach, but if there is no other way to store that much data, or 
run through it, then graph people will be happy.

Yahoo! MS search deal
This was a discussion topic run by Julio

400 Y! staff are moving to MS. How many are search specialists, versus Hadoop hackers.
Y! is driving large scale tests, facebook is #2.
Y! are making Hadoop the core of the company; it is their LOB of datacentre. 

http://www.slideshare.net/steve_l/graphs-1848617
https://cwiki.apache.org/confluence/display/HADOOP2/PageRank
https://cwiki.apache.org/confluence/display/HADOOP2/PageRank
http://throb.googlecode.com/svn/trunk/src/java/org/apache/hadoop/hamburg/
https://cwiki.apache.org/confluence/display/HADOOP2/MapReduce
http://www2.computer.org/portal/web/csdl/doi/10.1109/MCSE.2009.120
https://cwiki.apache.org/confluence/display/HADOOP2/PageRank


1.  

2.  

3.  
4.  
5.  
6.  

What are the risks of the Merger, and warning signs of trouble:

silence: Y! developers do their own fork, it goes closed source. We have seen this happen in other OSS projects (Axis), where a single company 
suddenly disappears. There is no defence from this other than making sure development knowledge is widespread. The JIRA-based discussion
/documentation is good here, as it preserves all knowledge, and makes decisions in the open.
staff departure. Key staff in the Hadoop team could leave, which would set things back. Moving into MS could be bad, but moving to Google 
would set back development the worst.
slower development/rate of feature addition
reduced release rate. This can compensate for reduced testing resources.
reduced rate of bug fixes. We can assume that Y!s own problems will be addressed, then everything else is other people's problems.
Less testing, reduced quality

Apparently under ] - number of messages/JIRA and infer activity, such as [  and contributors http://community.cloudera.com/reports/47/contributors/ popular 
issues

With Yahoo! outsourcing searching to MS, it means that MS can take on a big project that -even if it isn't profitable to MS, can be subsidised by other parts 
of their business. It ensures Yahoo! continuing survival as an independent company, which is the best state for Hadoop development. It also frees up 
some Yahoo! datacentres for other projects. Those big datacentres are large, slowly-depreciating assets, and by offloading the indexing to someone else, 
there is now spare datacentre capacity for Yahoo! to use for other uses, uses that are highly likely to use Hadoop at the back end -because what else 
would they build a datacentre-scale application on?

At the same time, there are opportunities for people outside Yahoo!

more agile deployments
more open to contributions from other people, universities etc.

Of course, this could impact release schedule/quality; needs to be managed well. Clearly for Cloudera, this gives them a greater opportunity to position 
themselves as "the owners of Hadoop", especially if they get more of the core Hadoop people on board. However, Apache do try to add their own 
management layer to stop handing off full ownership of a project to outside companies. But the reality is whoever provides the engineering effort owns the 
project, so any organisation that can provide FTEs can dominate.

What are the increased responsibilities for everyone else involved with Hadoop?

Everyone has to test on larger cluster. EC2 may get tested, but it's not enough as it is virtual, and only represents one single site/network config.
Everyone should pull down and play with the pre-releases, on test clusters. Check the FS upgrades work, etc.

http://community.cloudera.com
http://community.cloudera.com/reports/47/contributors/
http://community.cloudera.com/reports/47/issues/
http://community.cloudera.com/reports/47/issues/

	BristolHadoopWorkshop

