
1.

2.

3.

4.

5.

6.

a.

DFS requirements
The Hadoop Distributed File System requirements.
The Hadoop Distributed File system (DFS) is a fault tolerant scalable distributed storage component of the Hadoop distributed high performance
computing platform. The purpose of this document is to summarize the requirements Hadoop DFS should be targeted for, and to outline further
development steps towards achieving this requirements.

The requirements are divided below into groups: , , , , etc. listed in the order of their importance. The reliability scalability functionality performance
requirements are intended to reflect the scale and the nature of the distributed tasks that should run under the Hadoop platform. The prioritized list of
projects presented in the last section is a cumulative digest of ideas proposed by Hadoop developers that we believe will lead to achieving formulated
goals. As the next step we would like to socialize and finalize the list. An important step in this direction would be building a re-factoring procedure which
would let us upgrade different components of DFS step by step keeping the system functional and backward compatible all the way through the process.

DFS Scale requirements:

Number of nodes – 10 thousand.
Total data size – 10 PB.

Assuming 10,000 nodes capable of storing 1TB each. This is an order of magnitude estimate. With 750GB disks becoming commodity
we could reasonably expect to have to support 750GB*4/node = 3TB/node = 30PB total.

Number of files – 100 million.
If DFS data size is 10 and the block size is 10 then under the assumption that each file has exactly one block we need to support 10 16 8 8

files.
On our current installation there is 32TB of data, using 55,000 files and folders. Scaling 32TB to 10PB under the assumption the average
file size remains the same gives us an estimate of 18,000,000 files.

Number of concurrent clients – 100 thousand.
If on a 10,000 cluster each node has one task tracker running 4 tasks each according to current m/r defaults then we need to support
40,000 simultaneous clients.

Acceptable level of data loss – 1 hour.
Any data created or updated in DFS 1 hour ago or before is guaranteed to be recoverable in case of system failures.

Acceptable downtime level – 2 hours.
DFS failure requires manual system recovery. The system is guaranteed to be available again not later than 2 hours after the recovery
start.

Feature requirements:

File Operations: open, create, close, read, append, truncate, delete, rename, undelete, get block locations, set replication, seek, tell
Exclusive and shared access for serial/random reads and appends.
Appenders should support flush() operation, which would flush buffer directly to DFS.
File system Operations: readdir, directory rename, statistics (nfiles, nbytes, nblocks)
Robust check-pointing and journaling
Metadata versioning for backward compatibility
Programming language agnostic client protocol
Topology awareness (rack awareness minimally) for smarter block placement
Automatic corruption detection and correction
Atomic append
Multiple appenders
Owners, permissions, quotas

List of projects:

Re-factoring. Develop abstractions for DFS components with each component represented by an interface, specifying its functionality and
interaction with other components. With good abstractions, it should be easy to add new features without compromising reliability. The
abstractions should be evaluated with required future features in mind.
For example, data nodes might have a block transfer object, a block receive object, etc., with carefully defined behavior, coordinated by a top-
level control structure, instead of the morass of methods in the data node at present.
(Reliability) and namespace edits logging.Robust name node checkpointing

 Currently the system is not restorable in case of name node hardware failure.
DFS should store “image” and “edits” files on a local name node disk and replicate them on backup nodes using a simple streaming protocol.

 .HADOOP-90 Done
(Reliability) Define the , what is done by each component, in which order. Introduce a concept of , which would not startup process “safe mode”
make any block replication/removal decisions or change the state of the namespace in any way. Name node stays in safe mode until a
configurable number of nodes have been started and reported to the name node a configurable percentage of data blocks.

 .HADOOP-306 Done
(Reliability) The name node serving distinct data storages that ever reported to the name node. checkpoint should store a list of data nodes
Namely, the following is stored for each data node in the cluster:
<host:port; storageID; time of last heartbeat; user id>.
Missing nodes should be reported in the DFS UI, and during the startup. See also 3.a.

, .HADOOP-456 Done
(Reliability) Nodes with should report the problem to the name node and shut themselves down if all their local disks are read only disks
unavailable.

 .HADOOP-163 Done
(Specification) Define .recovery/failover and software upgrade procedures

http://issues.apache.org/jira/browse/HADOOP-90
http://issues.apache.org/jira/browse/HADOOP-306
http://issues.apache.org/jira/browse/HADOOP-456
http://issues.apache.org/jira/browse/HADOOP-163

6.

a.
b.
c.

7.

8.

a.

b.
9.

10.
a.

11.

a.

b.

c.

d.
e.
f.
g.

12.

13.
14.

15.

16.

a.

17.

18.

19.

a.
b.

20.

21.

a.
b.
c.

The recovery of the cluster is manual; a document describing steps for the cluster safe recovery after a name node failure is desired.
Based on the recovery procedures estimate the downtime of the cluster when the name node fails.
A document is needed describing general procedures required to transition DFS from one software version to another.

], [.HADOOP-702 http://issues.apache.org/jira/browse/HADOOP-702 Done
(Reliability) The name node should boost the that are far from their replication target. If necessary it should priority of re-replicating blocks
delay requests for new blocks, opening files etc., in favor of re-replicating blocks that are close to being lost forever.

 .HADOOP-659 Done
(Functionality) Currently DFS supports exclusive on create only . We need more general appends that would allow re-opening files file appends
for appending. Our plan is to implement it in two steps:

Exclusive appends.
, .HADOOP-1700 HDFS-265 Done

Concurrent appends.
(Functionality) Support for operation.“truncate”
This is a new functionality that is not currently supported by DFS.
(Functionality) :Configuration

Accepting/rejecting rules for hosts and users based on regular expressions. The string that is matched against the regular expression
should include the host, user, and cluster names.

 .HADOOP-442 Done
(Functionality) DFS browsing UI.

 Currently DFS has a rather primitive UI.
The UI should

Let browse the file system going down to each file, each file block, and further down to the block replicas.
 , .HADOOP-347 HADOOP-392 Done

Report status of each directory, file, block, and block replica.
 .HADOOP-347 Done

Show list of data nodes, their status, and non-operational nodes (see 4).
 .HADOOP-250 Done

Show data node configuration and its extended status.
List data node blocks and file names they belong to.
Report the name node configuration parameters.
History of data node failures, restarts, etc.

(Scalability) Nodes with should maintain local disks data distribution internally.multiple disks
 .HADOOP-64 Done

(Scalability) for the DFS name node.Select-based communication
(Functionality) Currently, if we want to remove x nodes from the DFS cluster, we need to remove them at most two at a time, and wait until re-
replication happens, and there's no feedback on that. It would be good to specify a list of nodes to remove, have their data re-replicated while
they're still online, and get a confirmation on completion.

 .HADOOP-681 Done
(Specification) Define commands. A formalization of DFS consistency model with underlying assumptions and invariants for read and append
the result guarantees.
(Performance) Check sum data should not be stored as a separate DFS , but rather maintained by a data node per locally stored block crc-file
copy. This will reduce name node operations and improve read data locality for maps

 .HADOOP-1134 Done
CRC scanning. We should dedicate up to 1% of the disk bandwidth on a data node to reading back the blocks and validating their
CRCs. The results should be logged and reported in the DFS UI

 .HADOOP-2012 Done
(Performance) DFS should operate with .constant size file blocks
Currently internally DFS supposes that blocks of the same file can have different sizes. In practice all of them except for the last one have the

 same size. The code could be optimized if the above assumption is removed.
Each block can be of any size up to the file’s fixed block size. The DFS client provides an API to report gaps and/or an API option to skip gaps or
see them as NULLs. The reporting is done at the data node level allowing us to remove all the size data & logic at the name node level.
(Performance) Client writes should based on the buffer size set at creation of the stream rather than collecting data in a flush directly to DFS
temporary file on a local disk.

 .HADOOP-66 Done
(Performance) Currently the entire list of stored blocks to the name node once in an hour. Most of this information is data nodes report
redundant. Processing of large reports reduces the name node availability for application tasks.
Possible solutions:

Data nodes report a portion (e.g. 20%, or bounded by the total size of transmitted data) of their blocks but (5 times) more often.
Data nodes report just the delta with the removed blocks being explicitly marked as such.
On startup the name node restores its state from a checkpoint. The checkpoint stores information about files and their blocks, but not the
block locations. The locations are restored from the data node reports. That is why, at startup data nodes need to report complete lists of
stored blocks. Subsequent reports do not need to contain all blocks, just the ones that have been modified since the last report.
Each data node reports its blocks in one hour intervals. In order to avoid traffic jams the name node receives reports from different data
nodes at different randomized times. Thus, on e.g. a 600 node cluster the name node receives 10 reports per minute, meaning that the
block list validation happens 10 times a minute. We think it is important to minimize the reporting data size mostly from the point of view
of the receiver.
The name node should have means to request complete reports from data nodes, which is required in case the name node restarts.
HDFS-395

(Performance) Rather than locking the whole name node for every namespace update, the name Fine grained name node synchronization.
node should have only a few synchronized operations. These should be very efficient, not performing i/o and allocating few if any objects. This
synchronous name node kernel should be well-defined, so that developers were aware of its boundaries.

 .HADOOP-814 Done
(Performance) data structure. In order to support large namespaces the name node should efficiently represent internal Compact name node
data, which particularly mean eliminating redundant block mappings.
Currently DFS supports the following blocks mappings:

Block to data node map (FSNamesystem.blocksMap)
Data node to block map (FSNamesystem.datanodeMap)
INode to block map (INode.blocks)

#
http://issues.apache.org/jira/browse/HADOOP-702
http://issues.apache.org/jira/browse/HADOOP-659
http://issues.apache.org/jira/browse/HADOOP-1700
http://issues.apache.org/jira/browse/HDFS-265
http://issues.apache.org/jira/browse/HADOOP-442
http://issues.apache.org/jira/browse/HADOOP-347
http://issues.apache.org/jira/browse/HADOOP-392
http://issues.apache.org/jira/browse/HADOOP-347
http://issues.apache.org/jira/browse/HADOOP-250
http://issues.apache.org/jira/browse/HADOOP-64
http://issues.apache.org/jira/browse/HADOOP-681
http://issues.apache.org/jira/browse/HADOOP-1134
http://issues.apache.org/jira/browse/HADOOP-2012
http://issues.apache.org/jira/browse/HADOOP-66
http://issues.apache.org/jira/browse/HDFS-395
http://issues.apache.org/jira/browse/HADOOP-814

21.

d.

22.

a.

b.
c.
d.

23.

24.

25.

26.
27.

a.
b.
c.
d.
e.

28.

29.

1.

2.

3.

Block to INode map (FSDirectory.activeBlocks)
 .HADOOP-1687 Done

(Performance) Improved .block allocation schema
 Currently DFS randomly selects nodes from the set of data nodes that can fit the required amount of data (a block).

Things we need:
Rack locality awareness. First replica is placed on the client’s local node, the second replica is placed on a node in the same rack as the
client, and all other replicas are placed randomly on the nodes outside the rack.

 .HADOOP-692 Done
Current replication policy is to place the first replica on the local node, to place the second replica on a remote rack, and to place the
third replica on the same rack as the second one.
Nodes with high disk usage should be avoided for block placement.
Nodes with high workload should be avoided for block placement.
Distinguish between fast and slow nodes (performance– and communication–wise).

(Performance) Equalize between the nodes. The name node should regularly analyze data node disk states, and re-replicate disk space usage
blocks if some of them are “unusually” low or high on storage.

 .HADOOP-1652 Done
(Performance) Commands “open” and “list” should , but rather return a fixed number of initial blocks. not return the entire list of block locations
Reads will fetch required block location when and if necessary.

 .HADOOP-894 Done
(Performance) When the it should reply to data nodes that they should retry reporting their blocks later. The data nodes name node is busy
should retry reporting the blocks in this case earlier than the regular report would occur.
(Functionality) Implement command, also known as “record append”.atomic append
(Functionality) Hadoop should conform to the common shell conventions.command shell

Hadoop commands should support common options like -D, -conf, -fs, etc. Each command at the same time can have its specific options.
Commons CLI should be used to implement the generic options parser and a specific command's option parsers.
Support for meta-characters and regular expressions in general for file names (cp, mv, rm, ls).
Interactive mode: ability to issue several commands in the same session, while keeping track of the context (such as pwd).
Scripts: the ability to execute several commands recorded in a text file.

(Interoperability) design. The majority of the current client logic should be placed into a data node, called “primary”, which controls the Slim client
process of data transfer to other nodes, lease extension and confirmation or failure reporting if required. A thin client makes it easier to keep Java,
C, etc. client implementations in sync.
Currently the client plays the role of the primary node.
(Interoperability) Implement mounting capabilities for DFS. WebDav and NFS server

Projects yet to be prioritized:

Data nodes should store the per-block metadata in order to make possible a in case the name node checkpoint partial metadata recovery
information is lost.

The "original" file name or id, an invariant preserved during file renames, could be stored in an additional file associated with each block,
like the crc-file (see 15).
Block offset (the block sequence number) could be encoded as a part of the block id, e.g.,
<block id> = <random unique per file #><block sequence number>
Adding concurrent file append and truncate features will require a block generation number to be stored as a part of the block file name.

Design a .DFS backup scheme
The backup is intended to prevent from data loss related to file system software bugs, particularly during the system upgrades.
The backup might not need to store the entire data set; some applications require just a fraction of critical data so that the rest can be effectively
restored.

Resources:
Video Optimization

http://issues.apache.org/jira/browse/HADOOP-1687
http://issues.apache.org/jira/browse/HADOOP-692
http://issues.apache.org/jira/browse/HADOOP-1652
http://issues.apache.org/jira/browse/HADOOP-894
http://netvideoseo.com

	DFS requirements

