
1.

2.

3.

4.

1.

2.
a.
b.

c.

HowToReleasePreDSBCR

This page is prepared for Hadoop Core committers. You need committer rights to create a new Hadoop Core release.

WARNING: These instructions use the ASF Jenkins servers to build a release artifact. This is against the ASF release policies!

These instructions have been updated for Hadoop 2.5.1 and later releases to reflect the changes to version-control (git), build-scripts and mavenization.

Earlier versions of this document are at and HowToReleaseWithSvnAndAnt HowToReleasePostMavenization

Preparation
Branching
Creating the release candidate (X.Y.Z-RC<N>)
Publishing
See Also

Preparation
Bulk update Jira to unassign from this release all issues that are open non-blockers and send follow-up notification to the developer list that this
was done.
If you have not already done so, to the file. Once you commit your changes, they will automatically be append your code signing key KEYS
propagated to the website. Also if you haven't. End users use the KEYS file (along with the) to upload your key to a public key server web of trust
validate that releases were done by an Apache committer. For more details on signing releases, see and Signing Releases Step-By-Step Guide

.to Mirroring Releases
To deploy artifacts to the Apache Maven repository create :~/.m2/settings.xml

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <servers>
 <server>
 <id>apache.staging.https</id>
 <username>Apache username</username>
 <password>Apache password</password>
 </server>
 </servers>
</settings>

Verify that CHANGES.txt reflect all relevant commits since the previous release. Add and commit missing ones to CHANGES.txt.

Branching
When releasing Hadoop X.Y.Z, the following branching changes are required. Note that a release can match more than one of the following if-conditions.
For a major release, one needs to make the changes for minor and point releases as well. Similarly, a new minor release is also a new point release.

Add the release X.Y.Z to CHANGES.txt files if it doesn't already exist (leave the date as unreleased for now). Commit these changes to any live
upstream branch. For example, if you are handling 2.6.2, commit the changes to trunk, branch-2, branch-2.6, and branch-2.7 (provided branch-
2.7 is an active branch). Starting from 2.8.0 release CHANGES.txt are obsolete, the step is required only for 2.7.* series of branches.

git commit -a -m "Adding release X.Y.Z to CHANGES.txt"

If this is a new major release (i.e., Y = 0 and Z = 0)
Create a new branch (branch-X) for all releases in this major release.
Update the version on trunk to (X+1).0.0-SNAPSHOT

mvn versions:set -DnewVersion=(X+1).0.0-SNAPSHOT

Deprecated since 2.8.0

This doc refers to the releases already end of life. For current releases, please see .HowToRelease

https://cwiki.apache.org/confluence/display/HADOOP2/HowToReleaseWithSvnAndAnt
https://cwiki.apache.org/confluence/display/HADOOP2/HowToReleasePostMavenization
http://www.apache.org/dev/release-signing.html#keys-policy
https://dist.apache.org/repos/dist/release/hadoop/common/KEYS
http://www.apache.org/dev/release-signing.html#keys-policy
http://www.apache.org/dev/release-signing.html#web-of-trust
http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/mirror-step-by-step.html?Step-By-Step
http://www.apache.org/dev/mirror-step-by-step.html?Step-By-Step
https://cwiki.apache.org/confluence/display/HADOOP2/HowToRelease

2.

c.

3.
a.
b.

c.

4.
a.
b.

c.

5.
a.
b.

c.

d.

e.

1.

Commit the version change to trunk.

git commit -a -m "Preparing for (X+1).0.0 development"

If this is a new minor release (i.e., Z = 0)
Create a new branch (branch-X.Y) for all releases in this minor release.
Update the version on branch-X to X.(Y+1).0-SNAPSHOT

mvn versions:set -DnewVersion=X.(Y+1).0-SNAPSHOT

Commit the version change to branch-X.

git commit -a -m "Preparing for X.(Y+1).0 development"

If this is a new point release (i.e., always)
Create a new branch (branch-X.Y.Z) for this release.
Update the version on branch-X.Y to X.Y.(Z+1)-SNAPSHOT

mvn versions:set -DnewVersion=X.Y.(Z+1)-SNAPSHOT

Commit the version change to branch-X.Y.

git commit -a -m "Preparing for X.Y.(Z+1) development"

Release branch (branch-X.Y.Z) updates:
Update to reflect the right versions, new features and big improvements.hadoop-project/src/site/markdown/index.md.vm
Update the version on branch-X.Y.Z TO X.Y.Z

mvn versions:set -DnewVersion=X.Y.Z

Generate with release notes for this release. You generate these with:releasenotes.html

python ./dev-support/relnotes.py -v ${vers}

If your release includes more then one version you may add additional -v options for each version. By default the
previousVersion mentioned in the notes will be X.Y.Z-1, if this is not correct you can override this by setting the --previousVer
option.

Update releasenotes.html

mv releasenotes.${vers}.html ./hadoop-common-project/hadoop-common/src/main/docs/releasenotes.html

Note that the script generates a set of notes for HDFS, HADOOP, MAPREDUCE, and YARN too, but only common is linked
from the html documentation so the indavidual ones are ignored for now.

Commit these changes to branch-X.Y.Z

git commit -a -m "Preparing for release X.Y.Z"

Now, for any branches in {trunk, branch-X, branch-X.Y, branch-X.Y.Z} that have changed, push them to the remote repo taking care of any conflicts.

git push <remote> <branch>

Creating the release candidate (X.Y.Z-RC<N>)
These steps need to be performed to create the _N_th RC for X.Y.Z, where starts from 0.N

Run mvn rat-check and fix any errors

1.

2.
3.

4.

5.
6.

7.
8.

9.

10.

11.

12.

13.

14.
15.

1.

2.

mvn apache-rat:check

Set environment variable version for later steps. export version=X.Y.Z-RCN
Set the release date for X.Y.Z to the current date in each CHANGES.txt file in branch-X.Y.Z and commit the changes.

git commit -a -m "Set the release date for $version"

Tag the release candidate:

git tag -s release-$version -m "Release candidate - $version"

Push branch-X.Y.Z and the newly created tag to the remote repo.
Deploy the maven artifacts, on your personal computer. Please be sure you have completed the prerequisite step of preparing the settings.

 file before the deployment. You might want to do this in private and clear your history file as your gpg-passphrase is in clear text.xml

mvn clean deploy -Psign,src,dist,native -Dtar -DskipTests -Dgpg.passphrase=<your-gpg-passphrase>
mvn site site:stage -DskipTests

Use to build the artifactsthis Jenkins job
Check that release files

hadoop-dist/target/hadoop-${version}.tar.gz
hadoop-dist/target/hadoop-${version}-src.tar.gz

look good - e.g. install it and run examples from tutorial.
Generate the checksums of the release file.

gpg --print-mds hadoop-${version}-src.tar.gz > hadoop-${version}-src.tar.gz.mds
gpg --print-mds hadoop-${version}.tar.gz > hadoop-${version}.tar.gz.mds

Sign the release. Please be sure you have completed the prerequisite step of preparing the key before signing.

gpg --armor --output hadoop-${version}-src.tar.gz.asc --detach-sig hadoop-${version}-src.tar.gz
gpg --armor --output hadoop-${version}.tar.gz.asc --detach-sig hadoop-${version}.tar.gz

Copy release files to a public place and ensure they are readable.

ssh people.apache.org mkdir public_html/hadoop-${version}
scp -p hadoop-${version}*.tar.gz* people.apache.org:public_html/hadoop-${version}
ssh people.apache.org chmod -R a+r public_html/hadoop-${version}

Log into , select " Repositories" from the left navigation pane, select the check-box against the specific hadoop repository, and Nexus Staging cl
 the release.ose

Call a release vote on common-dev at hadoop.apache.org. It's usually a good idea to start the release vote on Monday so that people will have a
chance to verify the release candidate during the week. Example
If the release candidate contains a serious issue, withdraw the vote, make necessary changes, and repeat this process.
If non-trivial changes are committed to the release branch, ensure the commits are present in the upstream branches.

Publishing
In 5 days if , the release may be published.the release vote passes

Update the release date in CHANGES.txt to the final release vote passage date, and commit them to all live upstream branches (e.g., trunk,
branch-X, branch-X.Y) to reflect the one in branch-X.Y.Z. Commit and push those changes.

git commit -a -m "Set the release date for X.Y.Z"

https://builds.apache.org/job/HADOOP2_Release_Artifacts_Builder
https://repository.apache.org
https://www.mail-archive.com/common-dev@hadoop.apache.org/msg13339.html
http://hadoop.apache.org/bylaws#Decision+Making

2.

3.

4.
5.

a.

b.
c.
d.

e.

6.
a.
b.

7.
8.

a.

b.
c.
d.
e.

f.
g.

h.

9.

10.

Tag the release. Do it from the release branch and push the created tag to the remote repository:

git tag -s rel/release-X.Y.Z -m "Hadoop X.Y.Z release"
git push origin rel/release-X.Y.Z

Use to create the final release filesthis Jenkins job
Create final release files

mvn clean deploy -Psign,src,dist,native -Dtar -DskipTests
mvn site site:stage -DskipTests

Make sure that on all artifacts have corresponding sources and javaDoc jars.Nexus
Copy release files to the distribution directory

Check out the corresponding svn repo if need be

svn co https://dist.apache.org/repos/dist/release/hadoop/common/ hadoop-dist

Generate new .mds files referring to the final release tarballs and not the RCs
Copy the release files to hadoop-dist/hadoop-${version}
Update the symlinks to current2 and stable2. The release directory usually contains just two releases, the most recent from two
branches.
Commit the changes (it requires a PMC privilege)

svn add hadoop-${version}
svn ci -m "Publishing the bits for release ${version}"

In Nexus
effect the release of artifacts by selecting the staged repository and then clicking Release
If there were multiple RCs, simply drop the staging repositories corresponding to failed RCs.

Wait 24 hours for release to propagate to mirrors.
Edit the website.

Checkout the website if you haven't already

svn co https://svn.apache.org/repos/asf/hadoop/common/site/main hadoop-common-site

Update the documentation links in .author/src/documentation/content/xdocs/site.xml
Update the release news in .author/src/documentation/content/xdocs/releases.xml
Update the news on the home page .author/src/documentation/content/xdocs/index.xml
Copy the new release docs to svn and update the link, by doing the following:docs/current

tar xvf /www/www.apache.org/dist/hadoop/core/hadoop-${version}/hadoop-${version}.tar.gz
cp -rp hadoop-${version}/share/doc/hadoop publish/docs/r${version}
rm -r hadoop-${version}
cd publish/docs
Update current2, current, stable and stable2 as needed.
For example
rm current2 current
ln -s r${version} current2
ln -s current2 current

Similarly update the symlinks for stable if need be.
Add the documentation changes.

svn add publish/docs/r${version}

Regenerate the site, review it, then commit it.

ant -Dforrest.home=$FORREST_HOME -Djava5.home=/usr/local/jdk1.5
firefox publish/index.html
svn commit -m "Updated site for release X.Y.Z."

Send announcements to the user and developer lists once the site changes are visible.

https://builds.apache.org/job/HADOOP2_Release_Artifacts_Builder
https://repository.apache.org
https://repository.apache.org

10.
11.

12.

In Jira, ensure that only issues in the "Fixed" state have a "Fix Version" set to release X.Y.Z.
In Jira, "release" the version. Visit the "Administer Project" page, then the "Manage versions" page. You need to have the "Admin" role in Hadoop
Core's Jira for this step and the next.
In Jira, close issues resolved in the release. Disable mail notifications for this bulk change.

See Also
Apache Releases FAQ

http://www.apache.org/dev/release.html

	HowToReleasePreDSBCR

