
LimitingTaskSlotUsage

Limiting Task Slot Usage
Job is consuming all task slots
Job has taken too many reduce slots that are still waiting for maps to finish
Job is referencing an external, limited resource (such as a database)
Job consumes too much RAM/disk IO/etc on a given node

Increasing the Number of Slots Used
Increase the amount of tasks per node
Increase the amount of map tasks
Increase the amount of reduce tasks

Limiting Task Slot Usage
There are many reasons why one wants to limit the number of running tasks.

Job is consuming all task slots

The most common reason is because a given job is consuming all of the available task slots, preventing other jobs from running. The easiest and best
solution is to switch from the default FIFO scheduler to another scheduler, such as the or the . Both solve this FairShareScheduler CapacityScheduler
problem in slightly different ways. Depending upon need, one may be a better fit than the other.

Job has taken too many reduce slots that are still waiting for maps to finish

There is a job tunable called mapred.reduce.slowstart.completed.maps that sets the percentage of maps that must be completed before firing off reduce
tasks. By default, this is set to 5% (0.05) which for most shared clusters is likely too low. Recommended values are closer to 80% or higher (0.80). Note
that for jobs that have a significant amount of intermediate data, setting this value higher will cause reduce slots to take more time fetching that data before
performing work.

Job is referencing an external, limited resource (such as a database)

In Hadoop terms, we call this a 'side-effect'.

One of the general assumptions of the framework is that there are not any side-effects. All tasks are expected to be restartable and a side-effect typically
goes against the grain of this rule.

If a task absolutely must break the rules, there are a few things one can do:

Disable .SpeculativeExecution
Deploy and use it as a persistent lock to keep track of how many tasks are running concurrentlyZooKeeper
Use a scheduler with a maximum task-per-queue feature and submit the job to that queue, such as or FairShareScheduler CapacityScheduler

Job consumes too much RAM/disk IO/etc on a given node

The in 0.21 has a feature whereby one may use RAM-per-task to limit how many slots a given task takes. By careful use of this feature, CapacityScheduler
one may limit how many concurrent tasks on a given node a job may take.

Increasing the Number of Slots Used
There are both job and server-level tunables that impact how many tasks are run concurrently.

Increase the amount of tasks per node

There are two server tunables that determine how many tasks a given will run on a node:TaskTracker

mapred.tasktracker.map.tasks.maximum sets the map slot usage
mapred.tasktracker.reduce.tasks.maximum sets the reduce slot usage

These must be set in the mapred-site.xml file on the . After making the change, the must be restarted to see it. One should see TaskTracker TaskTracker
the values increase (or decrease) on the main page. Note that this is set by your job.JobTracker not

Increase the amount of map tasks

Typically, the amount of maps per job is determined by Hadoop based upon the and the block size in place. Using mapred.min.split.size and InputFormat
mapred.max.split.size settings, one can provide hints to the system that it should use a size that is different than the block size to determine what the min
and max input size should be.

#
#
#
https://cwiki.apache.org/confluence/display/HADOOP2/ZooKeeper
#
#
#
https://cwiki.apache.org/confluence/display/HADOOP2/TaskTracker
https://cwiki.apache.org/confluence/display/HADOOP2/TaskTracker
https://cwiki.apache.org/confluence/display/HADOOP2/TaskTracker
https://cwiki.apache.org/confluence/display/HADOOP2/JobTracker
#

Increase the amount of reduce tasks

Currently, the number of reduces is determined by the job. mapred.reduce.tasks should be set by the job to the appropriate number of reduces. When
using Pig, use the PARALLEL keyword.

	LimitingTaskSlotUsage

